首页> 外文期刊>Physical Review. B, Condensed Matter >NiO growth on Ag(001): A layer-by-layer vibrational study
【24h】

NiO growth on Ag(001): A layer-by-layer vibrational study

机译:Ag(001)上NiO的生长:逐层振动研究

获取原文
获取原文并翻译 | 示例
           

摘要

The vibrational properties of NiO(001) films on Ag(001) with thicknesses up to 50 monolayers (ML) are characterized with high-resolution electron energy loss spectroscopy (HREELS). For NiO growth at 300 K, four different coverage regions are distinguished by HREELS. The film-thickness-dependent Fuchs-Kliewer (FK) phonon frequency shifts and intensity changes are identified from the NiO monolayer to bulklike thick films. Characteristic changes of the vibrational properties are analyzed to resolve restructuring processes during annealing and thermal decomposition of NiO films. A quantitative comparison of the experimental data, including a line shape analysis, with the calculated loss function based on dielectric theory reveals an excellent agreement between the bulk and the NiO(001) thin film phonon properties for film thicknesses above 15 ML. In contrast, a strong FK phonon softening is observed for thin films below 5 ML that cannot be explained by dielectric theory nor phonon standing waves. This softening is attributed to the presence of surface stress, which results from the -2% lattice mismatch between NiO and Ag.
机译:用高分辨率电子能量损失谱(HREELS)表征了厚度达50个单层(ML)的Ag(001)上NiO(001)膜的振动特性。对于300 K下的NiO增长,HREELS区分了四个不同的覆盖区域。薄膜厚度依赖性的Fuchs-Kliewer(FK)声子频移和强度变化可从NiO单层到块状厚膜中找到。分析了振动特性的特征变化,以解决NiO薄膜退火和热分解过程中的重组过程。对实验数据的定量比较,包括线形分析,以及基于介电理论的计算损失函数,揭示了膜厚大于15 ML时,体积与NiO(001)薄膜声子特性之间的极好的一致性。相反,对于低于5 ML的薄膜,观察到了强烈的FK声子软化,这不能通过介电理论或声子驻波来解释。这种软化归因于表面应力的存在,这是由于NiO和Ag之间的-2%晶格失配引起的。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2016年第7期|075438.1-075438.10|共10页
  • 作者单位

    Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle, Germany,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;

    Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle, Germany;

    Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle, Germany;

    Max Planck Institute for Microstructure Physics, 06120 Halle, Germany;

    Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, 06120 Halle, Germany,Max Planck Institute for Microstructure Physics, 06120 Halle, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号