...
首页> 外文期刊>Physical review >Second-principles method for materials simulations including electron and lattice degrees of freedom
【24h】

Second-principles method for materials simulations including electron and lattice degrees of freedom

机译:包含电子和晶格自由度的材料模拟的第二原理方法

获取原文
获取原文并翻译 | 示例

摘要

We present a first-principles-based (second-principles) scheme that permits large-scale materials simulations including both atomic and electronic degrees of freedom on the same footing. The method is based on a predictive quantum-mechanical theory-e.g., density functional theory-and its accuracy can be systematically improved at a very modest computational cost. Our approach is based on dividing the electron density of the system into a reference part-typically corresponding to the system's neutral, geometry-dependent ground state-and a deformation part-defined as the difference between the actual and reference densities. We then take advantage of the fact that the bulk part of the system's energy depends on the reference density alone; this part can be efficiently and accurately described by a force field, thus avoiding explicit consideration of the electrons. Then, the effects associated to the difference density can be treated perturbatively with good precision by working in a suitably chosen Wannier function basis. Further, the electronic model can be restricted to the bands of interest. All these features combined yield a very flexible and computationally very efficient scheme. Here we present the basic formulation of this approach, as well as a practical strategy to compute model parameters for realistic materials. We illustrate the accuracy and scope of the proposed method with two case studies, namely, the relative stability of various spin arrangements in NiO (featuring complex magnetic interactions in a strongly-correlated oxide) and the formation of a two-dimensional electron gas at the interface between band insulators LaAlO_3 and SrTiO_3 (featuring subtle electron-lattice couplings and screening effects). We conclude by discussing ways to overcome the limitations of the present approach (most notably, the assumption of a fixed bonding topology), as well as its many envisioned possibilities and future extensions.
机译:我们提出了一种基于第一原理的(第二原理)方案,该方案允许在相同的基础上进行包括原子和电子自由度的大规模材料模拟。该方法基于预测的量子力学理论,例如密度泛函理论,并且可以以非常适度的计算成本来系统地提高其准确性。我们的方法是基于将系统的电子密度分为参考部分(通常对应于系统的中性,几何相关的基态)和变形部分(定义为实际密度与参考密度之间的差)。然后,我们利用了一个事实,即系统能量的大部分依赖于参考密度。该部分可以通过力场有效而准确地描述,从而避免了对电子的明确考虑。然后,通过在适当选择的Wannier函数基础上进行工作,可以高精度地摄动与差异密度相关的影响。此外,可以将电子模型限制在感兴趣的波段。所有这些功能的组合产生了非常灵活且计算效率很高的方案。在这里,我们介绍了此方法的基本公式,以及为实际材料计算模型参数的实用策略。我们通过两个案例研究来说明该方法的准确性和范围,即NiO中各种自旋排列的相对稳定性(在强相关氧化物中具有复杂的磁相互作用)和在该处形成二维电子气。带绝缘子LaAlO_3和SrTiO_3之间的界面(具有微妙的电子-晶格耦合和屏蔽效应)。我们通过讨论克服当前方法的局限性(最著名的是固定键合拓扑结构的假设)以及其许多可预见的可能性和未来扩展的方法来得出结论。

著录项

  • 来源
    《Physical review 》 |2016年第19期| 195137.1-195137.28| 共28页
  • 作者单位

    Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, Cantabria Campus International, Avenida de los Castros s, 39005 Santander, Spain;

    Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain;

    Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain,Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux 5, L-4362 Esch/Alzette, Luxembourg;

    Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, Cantabria Campus International, Avenida de los Castros s, 39005 Santander, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号