...
首页> 外文期刊>Physical review >Prediction of ferromagnetism in MnB and MnC on nonmagnetic transition-metal surfaces studied by first-principles calculations
【24h】

Prediction of ferromagnetism in MnB and MnC on nonmagnetic transition-metal surfaces studied by first-principles calculations

机译:通过第一性原理研究预测非磁性过渡金属表面MnB和MnC中的铁磁性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We propose two-dimensional ferromagnetic nanostructures, i.e., single-layer films of MnB as well as MnC, on the basis of first-principles calculations. The ferromagnetic state is stable in a freestanding MnB monolayer as well as the one on many nonmagnetic metal substrates, including Ag(001). We have identified the mechanism of the itinerant ferromagnetism as the kinetic-energy gain due to the minority-spin hopping of 3d electrons in Mn atoms through B atoms. The second-order perturbative analysis treating hybridization as overlap integrals clarifies that the perpendicular magnetic anisotropy in freestanding MnB and MnB/Ag(001) is mainly attributed to virtual transition processes between up-spin occupied states and down-spin unoccupied states. In contrast, the in-plane anisotropy in MnB/Pd(001) comes from virtual transition processes among down-spin occupied states and up-spin unoccupied states.
机译:在第一性原理计算的基础上,我们提出了二维铁磁纳米结构,即MnB和MnC的单层膜。铁磁状态在独立的MnB单层以及包括Ag(001)在内的许多非磁性金属衬底上均稳定。我们已经将流动铁磁性的机理确定为动能增益,这是由于Mn原子中的3d电子通过B原子发生了少数自旋跳跃。将杂交视为重叠积分的二阶微扰分析表明,独立式MnB和MnB / Ag(001)中的垂直磁各向异性主要归因于上旋占据状态和下旋未占据状态之间的虚拟过渡过程。相反,MnB / Pd(001)中的面内各向异性来自下旋转占用状态和上旋转未占用状态之间的虚拟过渡过程。

著录项

  • 来源
    《Physical review》 |2017年第24期|245416.1-245416.7|共7页
  • 作者单位

    Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan;

    Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号