首页> 外文OA文献 >Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides
【2h】

Calibrating transition-metal energy levels and oxygen bands in first-principles calculations: Accurate prediction of redox potentials and charge transfer in lithium transition-metal oxides

机译:在第一性原理计算中校准过渡金属能级和氧能带:准确预测锂过渡金属氧化物中的氧化还原电位和电荷转移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Transition-metal (TM) oxides play an increasingly important role in technology today, including applications such as catalysis, solar energy harvesting, and energy storage. In many of these applications, the details of their electronic structure near the Fermi level are critically important for their properties. We propose a first-principles–based computational methodology for the accurate prediction of oxygen charge transfer in TM oxides and lithium TM (Li-TM) oxides. To obtain accurate electronic structures, the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional is adopted, and the amount of exact Hartree-Fock exchange (mixing parameter) is adjusted to reproduce reference band gaps. We show that the HSE06 functional with optimal mixing parameter yields not only improved electronic densities of states, but also better energetics (Li-intercalation voltages) for LiCo O[subscript 2] and LiNi O[subscript 2] as compared to the generalized gradient approximation (GGA), Hubbard U corrected GGA (GGA + U), and standard HSE06. We find that the optimal mixing parameters for TM oxides are system specific and correlate with the covalency (ionicity) of the TM species. The strong covalent (ionic) nature of TM-O bonding leads to lower (higher) optimal mixing parameters. We find that optimized HSE06 functionals predict stronger hybridization of the Co 3d and O 2p orbitals as compared to GGA, resulting in a greater contribution from oxygen states to charge compensation upon delithiation in LiCo O[subscript 2]. We also find that the band gaps of Li-TM oxides increase linearly with the mixing parameter, enabling the straightforward determination of optimal mixing parameters based on GGA (α = 0.0) and HSE06 (α = 0.25) calculations. Our results also show that G[subscript 0]W[subscript 0]@GGA + U band gaps of TM oxides (MO, M = Mn, Co, Ni) and LiCo O[subscript 2] agree well with experimental references, suggesting that G[subscript 0]W[subscript 0] calculations can be used as a reference for the calibration of the mixing parameter in cases when no experimental band gap has been reported.
机译:过渡金属(TM)氧化物在当今的技术中扮演着越来越重要的角色,包括催化,太阳能收集和能量存储等应用。在许多此类应用中,费米能级附近的电子结构细节对其性能至关重要。我们提出了一种基于第一性原理的计算方法,用于精确预测TM氧化物和锂TM(Li-TM)氧化物中的氧电荷转移。为了获得准确的电子结构,采用了Heyd-Scuseria-Ernzerhof(HSE06)混合功能,并调整了精确的Hartree-Fock交换量(混合参数)以重现参考带隙。我们表明,具有最佳混合参数的HSE06功能与广义梯度近似法相比,不仅可以提高状态的电子密度,而且可以提高LiCo O [下标2]和LiNi O [下标2]的能级(Li嵌入电压)。 (GGA),Hubbard U校正的GGA(GGA + U)和标准HSE06。我们发现,TM氧化物的最佳混合参数是系统特定的,并且与TM物种的共价性(离子性)相关。 TM-O键的强共价(离子)性质导致较低(较高)的最佳混合参数。我们发现,与GGA相比,优化的HSE06功能预测了Co 3d和O 2p轨道的杂化更强,从而导致氧态对LiCo O [下标2]脱锂时的电荷补偿具有更大的贡献。我们还发现,Li-TM氧化物的带隙随混合参数线性增加,从而能够基于GGA(α= 0.0)和HSE06(α= 0.25)计算直接确定最佳混合参数。我们的结果还表明,TM氧化物(MO,M = Mn,Co,Ni)和LiCo O [下标2]的G [下标0] W [下标0] @GGA + U带隙与实验参考值吻合良好,表明在未报告实验带隙的情况下,G [下标0] W [下标0]计算可以用作校准混合参数的参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号