...
首页> 外文期刊>Physical review. B, Condensed Matter And Materals Physics >Exciton confinement in strain-engineered metamorphic InAs/In_xGa_(1-x)As quantum dots
【24h】

Exciton confinement in strain-engineered metamorphic InAs/In_xGa_(1-x)As quantum dots

机译:应变工程变质InAs / In_xGa_(1-x)As量子点的激子约束

获取原文
获取原文并翻译 | 示例
           

摘要

We report a comprehensive study of exciton confinement in self-assembled InAs quantum dots (QDs) in strain-engineered metamorphic In_xGa_(1-x)As confining layers on GaAs using low-temperature magnetophotolu-minescence. As the lattice mismatch (strain) between QDs and confining layers (CLs) increases from 4.8% to 5.7% the reduced mass of the exciton increases, but saturates at higher mismatches. At low QD-CL mismatch there is clear evidence of spillover of the exciton wave function due to small localization energies. This is suppressed as the In content x in the CLs decreases (mismatch and localization energy increasing). The combined effects of low effective mass and wave-function spillover at high x result in a diamagnetic shift coefficient that is an order of magnitude larger than for samples where In content in the barrier is low (mismatch is high and localization energy is large). Finally, an anomalously small measured Bohr radius in samples with the highest x is attributed to a combination of thermalization due to low localization energy, and its enhancement with magnetic field, a mechanism which results in small dots in the ensemble dominating the measured Bohr radius.
机译:我们报告了对低温工程化的GaAs上应变工程变质In_xGa_(1-x)As约束层中自组装InAs量子点(QDs)中的激子约束的全面研究。随着QD和限制层(CL)之间的晶格失配(应变)从4.8%增加到5.7%,激子的质量降低,但在较高的失配时饱和。在低QD-CL失配下,有清晰的证据表明由于较小的定位能量,激子波函数会溢出。随着CL中的In含量x减少(失配和定位能量增加),这被抑制。低有效质量和高x处的波函数外溢的共同作用导致抗磁位移系数比势垒中In含量低(失配高且定位能量大)的样品大一个数量级。最后,具有最高x的样本中异常测得的玻尔半径异常归因于低定位能量导致的热化以及磁场的增强,这种机制导致整体中的小点占据了测得的玻尔半径。

著录项

  • 来源
    《Physical review. B, Condensed Matter And Materals Physics》 |2017年第19期|195301.1-195301.8|共8页
  • 作者单位

    Department of Physics, Lancaster University, Lancaster LAI 4YB, United Kingdom,Department of Physics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;

    Department of Physics, Lancaster University, Lancaster LAI 4YB, United Kingdom;

    Institute for Nanoscale Physics and Chemistry (INPAC), Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium;

    Institute for Nanoscale Physics and Chemistry (INPAC), Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium;

    Institute for Nanoscale Physics and Chemistry (INPAC), Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium;

    IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 1-43124 Parma, Italy;

    IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 1-43124 Parma, Italy;

    IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 1-43124 Parma, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号