...
首页> 外文期刊>Physical review >Finite-size effects on the lattice dynamics in spin crossover nanomaterials. I. Nuclear inelastic scattering investigation
【24h】

Finite-size effects on the lattice dynamics in spin crossover nanomaterials. I. Nuclear inelastic scattering investigation

机译:自旋交叉纳米材料中晶格动力学的有限尺寸效应。一,核非弹性散射研究

获取原文
获取原文并翻译 | 示例
           

摘要

We report the investigation of the size evolution of lattice dynamics in spin crossover coordination nanoparticles of [Fe(pyrazine)(Ni(CN)_4)] through nuclear inelastic scattering (NIS) measurements. Vibrational properties in these bistable molecular materials are of paramount importance and NIS permits access to the partial vibrational density of states in both spin states [high spin (HS) and low spin (LS)] from which thermodynamical and mechanical properties can be extracted. We show that the size reduction leads to the presence of inactive metal centers with the coexistence of HS and LS vibrational modes. The confinement effect has only weak impact on the vibrational properties of nanoparticles, especially on the optical modes which remain almost unchanged. On the other hand, the acoustic modes are much more affected which results in the increase of the vibrational entropy and also the Debye sound velocity in the smallest particles (<10 nm) in both spin states. This stiffening may be due to the elastic surface stress exerted by the external environment. An evidence of the influence of the host matrix on the vibrational properties of the nanoparticles is also highlighted through the matrix dependence of the sound velocity.
机译:我们报告[Fe(吡嗪)(Ni(CN)_4)]的自旋交叉配位纳米粒子中晶格动力学的大小演变通过核非弹性散射(NIS)测量的研究。这些双稳态分子材料中的振动特性至关重要,NIS可以访问自旋态[高自旋(HS)和低自旋(LS)]中状态的部分振动密度,从中可以提取热力学和机械特性。我们显示尺寸减小导致与HS和LS振动模式共存的惰性金属中心的存在。限制作用对纳米颗粒的振动特性,特别是对几乎保持不变的光学模式,仅具有微弱的影响。另一方面,声学模式受到的影响更大,这导致振动熵的增加以及两种自旋状态下最小粒子(<10 nm)中的德拜声速增加。这种硬化可能是由于外部环境施加的弹性表面应力。通过声速对基质的依赖性,也突出了基质对纳米颗粒振动特性的影响的证据。

著录项

  • 来源
    《Physical review》 |2017年第3期|035426.1-035426.8|共8页
  • 作者单位

    Laboratoire de Chimie de Coordination, CNRS UPR-8241 and Universite de Toulouse, UPS, INP, F-Toulouse, France,Institut Charles Gerhardt, Universite Montpellier 2, Place Eugene Bataillon, F-Montpellier, France;

    Laboratoire de Chimie de Coordination, CNRS UPR-8241 and Universite de Toulouse, UPS, INP, F-Toulouse, France,Institut Charles Gerhardt, Universite Montpellier 2, Place Eugene Bataillon, F-Montpellier, France;

    Laboratoire de Chimie de Coordination, CNRS UPR-8241 and Universite de Toulouse, UPS, INP, F-Toulouse, France;

    Laboratoire de Chimie de Coordination, CNRS UPR-8241 and Universite de Toulouse, UPS, INP, F-Toulouse, France;

    Institut Charles Gerhardt, Universite Montpellier 2, Place Eugene Bataillon, F-Montpellier, France;

    ESRF-The European Synchrotron, CS40220, F-38043 Grenoble Cedex 9, France;

    Laboratoire de Chimie de Coordination, CNRS UPR-8241 and Universite de Toulouse, UPS, INP, F-Toulouse, France;

    Laboratoire de Chimie de Coordination, CNRS UPR-8241 and Universite de Toulouse, UPS, INP, F-Toulouse, France;

    Laboratoire de Chimie de Coordination, CNRS UPR-8241 and Universite de Toulouse, UPS, INP, F-Toulouse, France;

    Laboratoire de Chimie de Coordination, CNRS UPR-8241 and Universite de Toulouse, UPS, INP, F-Toulouse, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号