首页> 外文期刊>Physical review letters >Realization of an Electrically Tunable Narrow-Bandwidth Atomically Thin Mirror Using Monolayer MoSe_2
【24h】

Realization of an Electrically Tunable Narrow-Bandwidth Atomically Thin Mirror Using Monolayer MoSe_2

机译:使用Monolayer MOSE_2实现电调电窄带宽原子薄镜

获取原文
获取原文并翻译 | 示例
           

摘要

The advent of two-dimensional semiconductors, such as van der Waals heterostructures, propels new research directions in condensed matter physics and enables development of novel devices with unique functionalities. Here, we show experimentally that a monolayer of MoSe2 embedded in a charge controlled heterostructure can be used to realize an electrically tunable atomically thin mirror, which effects 87% extinction of an incident field that is resonant with its exciton transition. The corresponding maximum reflection coefficient of 41% is only limited by the ratio of the radiative decay rate to the nonradiative linewidth of exciton transition and is independent of incident light intensity up to 400 W/cm(2). We demonstrate that the reflectivity of the mirror can be drastically modified by applying a gate voltage that modifies the monolayer charge density. Our findings could find applications ranging from fast programable spatial light modulators to suspended ultralight mirrors for optomechanical devices.
机译:二维半导体的出现,如van der Waals异质结构,在炼细物理学中推动了新的研究方向,并实现了具有独特功能的新型设备的开发。在这里,我们通过实验表明,嵌入在电荷控制异质结构中的MOSE2的单层可以用于实现电动可调谐的原子薄镜,其效应了与其激子过渡共振的入射场的灭绝。相应的最大反射系数为41%仅受辐射衰减率与激子过渡的非辐射线宽的比率限制,并且与入射光强度无关,最高可达400w / cm(2)。我们证明可以通过施加修改单层电荷密度的栅极电压来彻底修改镜子的反射率。我们的研究结果可以找到从快速可编程空间光调制器到悬挂的光机械设备的超级镜子的应用。

著录项

  • 来源
    《Physical review letters》 |2018年第3期|037401.1-037401.5|共5页
  • 作者单位

    ETH Inst Quantum Elect CH-8093 Zurich Switzerland;

    ETH Inst Quantum Elect CH-8093 Zurich Switzerland;

    ETH Inst Quantum Elect CH-8093 Zurich Switzerland;

    ETH Inst Quantum Elect CH-8093 Zurich Switzerland;

    ETH Inst Quantum Elect CH-8093 Zurich Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号