...
首页> 外文期刊>Physical review letters >Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H-2 on Ag(111)
【24h】

Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H-2 on Ag(111)

机译:金属表面解离化学吸附中的模式特定电子摩擦:Ag(111)上的H-2

获取原文
获取原文并翻译 | 示例
           

摘要

Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H-2 on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.
机译:电子摩擦和随之而来的非绝热能量损失在金属表面的化学反应动力学中起着重要作用。使用根据密度泛函理论动态评估的带有电子摩擦的分子动力学,我们发现了强烈的模式依赖性以及沿着键拉伸坐标的非绝热能量损失占优势,从而使H-2在Ag(111)表面上发生散射和解离化学吸附。具有变化的初始条件的示例性轨迹表明,该模式特异性在解离性化学吸附事件期间转化为调节的能量损失。尽管轻微的非绝热能量损失约为5%,但摩擦力的方向性仍会引起动态转向,从而影响单个反应的结果,特别是对于低入射能量和振动激发的分子。特定模式的摩擦引起旋转振动能量而不是平移能量的损失增加,并且在分子散射实验中其对最终能量分布的影响将最为明显。

著录项

  • 来源
    《Physical review letters》 |2017年第25期|256001.1-256001.6|共6页
  • 作者单位

    Yale Univ, Dept Chem, New Haven, CT 06520 USA;

    Univ Sci & Technol China, Dept Chem Phys, Hefei 230026, Anhui, Peoples R China;

    Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA;

    Yale Univ, Dept Chem, New Haven, CT 06520 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号