...
首页> 外文期刊>Physica status solidi >Tuning Resistive, Capacitive, and Synaptic Properties of Forming Free TiO_(2-x)-Based RRAM Devices by Embedded Pt and Ta Nanocrystals
【24h】

Tuning Resistive, Capacitive, and Synaptic Properties of Forming Free TiO_(2-x)-Based RRAM Devices by Embedded Pt and Ta Nanocrystals

机译:通过嵌入的Pt和Ta纳米晶体调节形成基于TiO_(2-x)的基于TiO_(2-x)的RRAM器件的电阻,电容和突触特性

获取原文
获取原文并翻译 | 示例

摘要

Resistive switching memories based on metal oxides arernemerging as a new research field and at the same time arernintensively studied as one of the most promising candidates forrnfuture non-volatile memory applications. However, in manyrnaspects their development has surpassed their understanding,rnarising thus questions about the underlying nature of thernswitching effect and the related uniformity issues. While severalrnphenomenological models have been devised in order tornelucidate on the origins of the switching effect, the conductingrnfilament (CF)-based model is gaining significant ground.[1]rnFollowing this assumption, the data storage takes place at leastrntwo resistance states provided by the generation/rupture of thernCFs. CFs may consist of either oxygenrnvacancies/metal precipitates[2] or a metallicrnchain of electrochemically active electrodernmetal.[3] Nevertheless, practical characteristicsrnof the CFs, such as direction of growth,rncomposition analysis, ruptured region, etc.,rnare difficult to be extracted from the abovernswitching conjectures. Thus, sophisticatedrnexperiments have been performed in orderrnto shed light on the atomic structure andrningredient of the CFs in the low resistancernstate (LRS) andhighresistance state(HRS)[2]rnas well as impedance spectroscopy techniques.[rn4] Despite of the exact nature of thernCFs, the major issue of resistive randomrnaccess memory (RRAM) technology is therninherit variability of the switching characteristics,rnwhich is directly connected with the randomness of the CFsrnformation/annihilation. While it seems practically impossiblernto control their characteristics, we can force them to evolverninto specific locations within the device active core.[5,6] Thus, arnvariety of optimization procedures have been suggested inrnorder to enhance the memory performance,[7,8] while NCsrnincorporation arising as one very promising technique tornovercome the switching variations,[9–11] especially when thernissues related with the uniformity of their distribution, inrnterms of diameter and surface density, will be efficientlyrnharnessed.[12]rnIn this work, we demonstrate that a wide range of non-volatilernmemory properties can be affected and improved by embeddedrnPt and Ta NCs. The concentrated electric field effect inrncombination with the charge trapping effect in the NCs, arernregarded as the driving forces for the recorded switchingrnpatterns. This possibility to tune the resistance levels over severalrnorders of magnitude is not usual to conventional materials andrnindicates the efficiency of NCs to influence the charge transferrnproperties.[13] In addition, insights about the origin of anrnintriguing phenomenon, such as capacitance switching,[14] arernprovided.
机译:基于金属氧化物的电阻式开关存储器正在兴起,成为了一个新的研究领域,与此同时,作为非易失性存储器应用的最有希望的候选者之一,人们对其进行了广泛的研究。然而,在许多方面,它们的发展已经超出了他们的理解,因此引起了人们对转换效应的内在本质以及相关的一致性问题的质疑。尽管已经设计了几种现象学模型来阐明开关效应的起源,但是基于导电丝(CF)的模型正在获得重要的基础。[1]在此假设之后,数据存储至少发生了一代人提供的两个电阻状态/ CF破裂。 CFs可能由氧空位/金属沉淀物[2]或电化学活性电极金属的金属链[3]组成。然而,很难从上述转换猜想中提取出CF的实际特征,例如生长方向,成分分析,破裂区域等。因此,为了揭示低阻态(LRS)和高阻态(HRS)[2]中的CF的原子结构和成分[2],以及阻抗谱技术,人们进行了复杂的实验。电阻式随机存取存储器(RRAM)技术的主要问题是开关特性的固有可变性,它直接与CF形成/ an灭的随机性有关。虽然实际上似乎无法控制它们的特性,但我们可以强迫它们进化到设备有源内核中的特定位置。[5,6]因此,建议了各种优化程序来增强内存性能,[7,8] NCs掺入作为克服开关变化的一种非常有前途的技术而出现,[9-11]特别是当与分布均匀性,直径和表面密度的不确定性有关的组织得到有效利用时。[12]在这项工作中,我们证明了嵌入式Pt和Ta NC可以影响和改善广泛的非易失性存储器性能。 NC中集中的电场效应与电荷俘获效应的结合被视为记录的开关模式的驱动力。在常规材料中,通常无法将电阻值调整到几个数量级的程度,这表明NC能够影响电荷转移性能。[13]此外,还提供了有关诸如电容开关之类的有趣现象起源的见解[14]。

著录项

  • 来源
    《Physica status solidi 》 |2018年第3期| 1-5| 共5页
  • 作者单位

    Department of Applied Physics National Technical University of Athens Iroon Polytechniou 9 Zografou, 15780 Athens, Greece;

    Department of Applied Physics National Technical University of Athens Iroon Polytechniou 9 Zografou, 15780 Athens, Greece;

    Department of Applied Physics National Technical University of Athens Iroon Polytechniou 9 Zografou, 15780 Athens, Greece;

    Institute of Nanoscience and Nanotechnology NCSR “Demokritos” Aghia Paraskevi, 15310 Athens, Greece;

    Department of Applied Physics National Technical University of Athens Iroon Polytechniou 9 Zografou, 15780 Athens, Greece;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号