...
首页> 外文期刊>Physica status solidi >Low-Temperature Operation of High-Efficiency Germanium Quantum Dot Photodetectors in the Visible and Near Infrared
【24h】

Low-Temperature Operation of High-Efficiency Germanium Quantum Dot Photodetectors in the Visible and Near Infrared

机译:可见光和近红外光中高效锗量子点光电探测器的低温操作

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High-responsivity, low-noise CMOS-compatible photodetectorsrn(PDs) are required for applications such as optical interconnectsrnon silicon chips and for imaging sensors. Crystalline Gernis compatible with the Si fabrication technology and isrncharacterized by lower synthesis temperatures, a larger absorptionrncoefficient, because of its smaller bandgap, and a largerrnexcitonic Bohr radius, which allows better modulation of itsrnbandgap with size. For these reasons, Ge has been a widelyusedrnmaterial for CMOS-compatible PD fabrication.[1–4] Apartrnfrom its crystalline form, a variety of Ge nanostructuresrnhave been investigated for improved optoelectronicrnperformance[4–10] including Ge QDsrnembedded in an oxide matrix for highefficiencyrnphotodetection.[5,10–17] Thernprincipal advantages of Ge QDs includernreduced phonon scattering, leading tornlonger carrier relaxation times, as well asrnconfinement in all three spatial dimensionsrnthat can reduce the dark current,rnboth contributing to higher SNR. Furthermore,rnGe QDs are characterized by arntunable bandgap which allows broadrnwavelength selection, from the near-IR tornthe visible, and finally intersubband transitionsrnare polarization independent inrncontrast to quantum wells. Typically, Gernphotodetectors are operated at cryogenicrntemperatures in order to suppress therndark current, arising from thermallygeneratedrncarriers due to its smallerrnbandgap. In this work we have studiedrnthe temperature-dependent photoresponsernand noise performance over the 100–300 Krnrange in the visible and near-IR, ofrnCMOS-compatible PDs based on GernQDs embedded in an SiO2 matrix as introduced in our previousrnwork.[18]
机译:对于诸如光互连,非硅芯片和成像传感器等应用,需要高响应性,低噪声的CMOS兼容光电探测器(PD)。 Gernis晶体与Si制备技术兼容,其特征在于较低的合成温度,较大的吸收系数(由于其较小的带隙)和较大的激磁玻尔半径,从而可以更好地调节其带隙随尺寸的变化。由于这些原因,Ge已成为与CMOS兼容的PD制造的一种广泛使用的材料。[1-4]除了其晶体形式之外,还研究了多种Ge纳米结构以改善光电性能[4-10],包括嵌入氧化物基体中的Ge QD以便进行高效光电检测。 。[5,10–17] Ge量子点的主要优点包括减少声子散射,导致更长的载流子弛豫时间,以及在三个空间维度上的局限性可以减少暗电流,这都有助于提高SNR。此外,GeGe QD的特征在于可调谐的带隙,它允许从近红外到可见光,再到子带间跃迁,分别选择独立于偏振的独立于量子阱的宽波长选择。通常,Gern光电检测器在低温下工作,以抑制由于带隙较小而由热载流子产生的暗电流。在这项工作中,我们研究了在可见光和近红外,CMOS兼容的PD(基于嵌入在SiO2矩阵中的GernQD)在100-300 Kr范围内与温度相关的光响应和噪声性能,如我们先前的工作中所述。[18]

著录项

  • 来源
    《Physica status solidi》 |2018年第3期|1-6|共6页
  • 作者单位

    School of Engineering, Brown University, 184 Hope St., Providence, RI 02912, USA;

    School of Engineering, Brown University, 184 Hope St., Providence, RI 02912, USA;

    School of Engineering, Brown University, 184 Hope St., Providence, RI 02912, USA Department of Physics, Brown University, 182 Hope St., Providence, RI 02912, USA;

    School of Engineering, Brown University, 184 Hope St., Providence, RI 02912, USA;

    School of Engineering, Brown University, 184 Hope St., Providence, RI 02912, USA Department of Physics, Brown University, 182 Hope St., Providence, RI 02912, USA;

    School of Engineering, Brown University, 184 Hope St., Providence, RI 02912, USA Department of Physics, Brown University, 182 Hope St., Providence, RI 02912, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号