首页> 外文期刊>Performance Evaluation >A framework for information dissemination in social networks using Hawkes processes
【24h】

A framework for information dissemination in social networks using Hawkes processes

机译:使用Hawkes流程在社交网络中传播信息的框架

获取原文
获取原文并翻译 | 示例

摘要

We define in this paper a general Hawkes-based framework to model information diffusion in social networks. The proposed framework takes into consideration the hidden interactions between users as well as the interactions between contents and social networks, and can also accommodate dynamic social networks and various temporal effects of the diffusion, which provides a complete analysis of the hidden influences in social networks. This framework can be combined with topic modeling, for which modified collapsed Gibbs sampling and variational Bayes techniques are derived. We provide an estimation algorithm based on nonnegative tensor factorization techniques, which together with a dimensionality reduction argument are able to discover, in addition, the latent community structure of the social network. At last, we provide numerical examples from real-life networks: a Game of Thrones and a MemeTracker datasets. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们在本文中定义了一个基于Hawkes的通用框架,以对社交网络中的信息扩散进行建模。所提出的框架考虑了用户之间的隐藏交互以及内容和社交网络之间的交互,并且还可以容纳动态社交网络和传播的各种时间效应,从而提供了对社交网络中隐藏影响的完整分析。该框架可以与主题建模相结合,为此可以得出改进的折叠Gibbs采样和变分贝叶斯技术。我们提供了一种基于非负张量因子分解技术的估计算法,该算法与降维参数一起还可以发现社交网络的潜在社区结构。最后,我们提供了来自现实网络的数值示例:《权力的游戏》和MemeTracker数据集。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号