首页> 外文期刊>Pattern Recognition Letters >Pattern classification using genetic algorithms f Determination of H
【24h】

Pattern classification using genetic algorithms f Determination of H

机译:使用遗传算法进行模式分类f H的确定

获取原文
获取原文并翻译 | 示例

摘要

A methodology based on the concept of a variable string length GA (VGA) is developed for determining auto- matically the number of hyperplanes for modeling the class boundaries in a GA-classifier. The genetic operators and fitness function are defined to take care of the variability in chromosome length. It is proved that the method is able to arrive at the optimal number of misclassifications after a sufficiently large number of iterations, and will need a minimal number of hyperplanes for this purpose. Experimental results on different artificial and real life data sets demonstrate that the classifier, using the concept of a variable length chromosome, can automatically determine an appropriate value of the number of hyperplanes, and also provide performance better than that of the fixed length version. Its comparison with another approach using a VGA is provided.
机译:开发了一种基于可变字符串长度GA(VGA)概念的方法,用于自动确定用于对GA分类器中的类边界进行建模的超平面的数量。定义遗传算子和适应度函数以照顾染色体长度的变异性。事实证明,该方法能够在经过足够多的迭代之后达到最优的错误分类次数,并且为此目的将需要最少数量的超平面。在不同的人工和现实数据集上的实验结果表明,使用可变长度染色体的概念,分类器可以自动确定超平面数的适当值,并且还提供比固定长度版本更好的性能。提供了与使用VGA的另一种方法的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号