首页> 外文期刊>Pattern recognition letters >Collaborative learning in bounding box regression for object detection
【24h】

Collaborative learning in bounding box regression for object detection

机译:对象检测边界框回归中的协作学习

获取原文
获取原文并翻译 | 示例

摘要

Object detection has attracted growing attention due to its extensive application prospect, in which bounding box regression is an essential component. Dedicated to collaborative learning in bounding box regression, we explore the unified framework of smooth L-1 and intersection over union, named SLIoU. On the basis of that, we propose a SLIoU loss as localization loss, which focuses on the geometric relationships of pairs of rectangular bounding boxes in overlapping degree, central position and structural shape. Furthermore, we propose a SLIoU-NMS for suppressing redundant detection boxes, which adaptively maps the evaluation value of detection boxes to meet the evaluation metric using nonlinear representation. By incorporating SLIoU loss and SLIoU-NMS into the state-of-the-art one-stage detectors, the detection performance is considerably improved. (C) 2021 Elsevier B.V. All rights reserved.
机译:由于其广泛的应用前景,对象检测引起了不断的关注,其中限制盒回归是一个必不可少的组成部分。 致力于在边界盒回归中的协作学习,我们探讨了平滑L-1的统一框架和联盟交叉口,名为SLIOU。 在此基础上,我们提出了一种作为本地化损失的SLIOU损失,专注于重叠程度,中心位置和结构形状成对成对的几何关系。 此外,我们提出了一种用于抑制冗余检测盒的SLIOU-NM,其自适应地映射检测框的评估值以满足使用非线性表示的评估度量。 通过将SLIOU丢失和SLIOU-NMS纳入最先进的单级探测器,检测性能显着提高。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2021年第8期|121-127|共7页
  • 作者单位

    Nankai Univ Coll Comp Sci Tianjin Peoples R China|Tianjin Key Lab Network & Data Secur Technol Tianjin Peoples R China;

    Nankai Univ Coll Comp Sci Tianjin Peoples R China|Tianjin Key Lab Network & Data Secur Technol Tianjin Peoples R China;

    MIT Lab Financial Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    Nankai Univ Coll Comp Sci Tianjin Peoples R China|Tianjin Key Lab Network & Data Secur Technol Tianjin Peoples R China;

    Nankai Univ Coll Artificial Intelligence Tianjin Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object detection; Bounding box regression; One-stage detector; Loss function; Non-maximum suppression;

    机译:对象检测;边界框回归;一级探测器;损失功能;非最大抑制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号