首页> 外文期刊>Pattern recognition letters >Filtering impulse noise in medical images using information sets
【24h】

Filtering impulse noise in medical images using information sets

机译:使用信息集在医学图像中过滤脉冲噪声

获取原文
获取原文并翻译 | 示例

摘要

An efficient filtering algorithm is required to remove noise and simultaneously protect fine details and important features in the medical images. In this paper, a noise adaptive information set based switching median (NAISM) filter is proposed for the removal of impulse noise. NAISM filter is inspired from fuzzy switching median filter and works on the concept of information sets. Information sets are derived from fuzzy sets to deal with the uncertainty. It works in two phases; first phase identifies noisy pixels and second applies filtering based on an adaptive switching criterion. It is by virtue of this switching criterion and the local effective information surrounding the noisy pixel, the best calculated value replaces the noisy pixel in the selected window. The proposed information set based filter is capable of removing both low and high noise densities and can preserve image details better than the fuzzy filter. The applicability of the proposed filter is demonstrated on different datasets including Berkeley Segmentation Dataset (BSD), medical and real images. The qualitative and quantitative results demonstrate the effectiveness of the proposed approach in suppressing noise over the existing approaches. (C) 2018 Elsevier B.V. All rights reserved.
机译:需要一种有效的过滤算法来消除噪声并同时保护医学图像中的细节和重要特征。本文提出了一种基于噪声的切换中值(Naism)滤波器的噪声自适应信息,用于去除脉冲噪声。 Naism滤波器受到模糊切换中值过滤器的启发,并在信息集的概念上工作。信息集来自模糊集来处理不确定性。它有两阶段工作;第一阶段识别噪声像素,并且基于自适应切换标准校正第二个应用过滤。通过这种切换标准和围绕嘈杂像素的局部有效信息,最好的计算值替换所选窗口中的噪声像素。所提出的基于信息集的滤波器能够去除低噪声密度,并且可以比模糊过滤器更好地保护图像细节。所提出的过滤器的适用性在包括伯克利分段数据集(BSD),医疗和真实图像的不同数据集上。定性和定量结果证明了提出的方法在抑制现有方法上抑制噪声的有效性。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号