首页> 外文期刊>Pattern recognition letters >Two-stage multi-modal MR images fusion method based on Parametric Logarithmic Image Processing (PLIP) Model
【24h】

Two-stage multi-modal MR images fusion method based on Parametric Logarithmic Image Processing (PLIP) Model

机译:基于参数对数图像处理(PLIP)模型的两级多模态MR图像融合方法

获取原文
获取原文并翻译 | 示例

摘要

MRI is one of the most compliant technique that is used for the screening of Brain Tumor. MRI can be acquired in four available modalities which are MR-T1, MR-T2, MR-PD and MR-Gad; among these MR-T2 comprises of most of the detailed information of the tumorous tissues. However, the accuracy and reliability of the diagnosis may be affected due to lack of sufficient details in each modality (as different MRI modalities highlight different set of tissues). Therefore, MR Image(s) fusion is essential to obtain a more illustrative image containing the requisite complementary details of each modality. For this purpose, multi-modal fusion of MR-T2 with MR-T1, MR-PD and MR-Gad have been dealt in this work using the proposed fusion method. This paper presents a two-stage fusion method using Stationary Wavelet Transform (SWT) in combination with Parameterized Logarithmic Image Processing (PLIP) model. At Stage-I of sub-band decomposition: the first level SWT coefficients contain large amount of noise thus suppressing the necessary edge information. This aspect has been resolved at Stage-Ⅱ by employing second level SWT decomposition along with Principal Component Analysis (PCA). The fusion coefficients from both the stages are finally fused using PLIP operators (prior to reconstruction). The obtained results are compared qualitatively as well as quantitatively using fusion metrics like Entropy, Fusion Factor, Standard Deviation and Edge Strength. Noteworthy visual response is obtained with PLIP fusion model in coherence with Human Visual System (HVS) characteristics.
机译:MRI是用于筛查脑肿瘤的最合规的技术之一。 MRI可以在四种可用的模式中获得,这是MR-T1,MR-T2,MR-PD和MR-GAD;在这些MR-T2中包括肿瘤组织的大多数详细信息。然而,由于每种方式缺乏足够的细节(随着不同的MRI方式突出不同的组织组),诊断的准确性和可靠性可能受到影响。因此,MR图像融合对于获得更多的说明性图像是必不可少的,该图像包含每个模态的必要互补细节。为此目的,使用所提出的融合方法处理了MR-T1,MR-GD和GAD的MR-T2的多模态融合。本文介绍了一种双级融合方法,使用静止小波变换(SWT)与参数化对数图像处理(PLIP)模型组合。在子带分解的阶段I,第一电平SWT系数包含大量噪声,从而抑制必要的边缘信息。通过使用第二级SWT分解以及主成分分析(PCA),在第Ⅱ期已经解决了该方面。来自两个阶段的融合系数最终使用PLIP运算符(重建之前)融合。使用诸如熵,熔融因子,标准偏差和边缘强度的融合度量来比较所得结果。利用人类视觉系统(HVS)特性的贴面融合模型获得了值得注意的视觉响应。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第8期|25-30|共6页
  • 作者单位

    Department of Electronics and Communication Engineering Shri Ramswaroop Memorial Group of Professional Colleges (SRMGPC) Faizabad Road Lucknow Uttar Pradesh 226028 India Dr. A.P.J. Abdul Kalam Technical University Lucknow Uttar Pradesh 226031 India;

    Department of Electronics and Communication Engineering Shri Ramswaroop Memorial Group of Professional Colleges (SRMGPC) Faizabad Road Lucknow Uttar Pradesh 226028 India Robert Bosch Engineering and Business Solutions Private Limited Adugodi Bangalore Karanataka 560030 India;

    Department of Electronics and Communication Engineering Shri Ramswaroop Memorial Group of Professional Colleges (SRMGPC) Faizabad Road Lucknow Uttar Pradesh 226028 India Dr. A.P.J. Abdul Kalam Technical University Lucknow Uttar Pradesh 226031 India;

    Department of Electronics and Communication Engineering Shri Ramswaroop Memorial Group of Professional Colleges (SRMGPC) Faizabad Road Lucknow Uttar Pradesh 226028 India Robert Bosch Engineering and Business Solutions Private Limited Near CHI-SEZ IT Park Coimbatore Tamilnadu 641035 India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MRI; HVS; PLIP;

    机译:MRI;HVS;pl;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号