首页> 外文期刊>Pattern recognition letters >Joint multi-scale discrimination and region segmentation for person re-ID
【24h】

Joint multi-scale discrimination and region segmentation for person re-ID

机译:人员重新ID的联合多尺度歧视和区域细分

获取原文
获取原文并翻译 | 示例

摘要

Most existing person re-identification methods are mainly based on human part partition with horizontal stripes or human body semantic segmentation. In this paper, we propose a method called MDRS (Multiscale Discriminative network with Region Segmentation) to integrate multi-scale discriminative feature learning, horizontal stripe partition and semantic segmentation in a single framework, in which multiscale horizontal stripe partition and usage of both global and local features make the framework be robust to human pose variation, occlusion and background clutter, and semantic segmentation boosts the performance of person identification via shared multi-scale feature extraction. MDRS is trained end-to-end with a multi-task learning strategy that considers three tasks simultaneously: person identification, triplet prediction and pixel-wise semantic segmentation. Comprehensive experiments confirm that our approach exceeds many methods and robustly achieves excellent performances on mainstream evaluation datasets including Market-1501, DukeMTMC-reid and CUHK03. (C) 2020 Elsevier B.V. All rights reserved.
机译:大多数现有人重新识别方法主要基于具有水平条纹或人体语义细分的人体分区。在本文中,我们提出了一种称为MDR的方法(多尺度鉴别网络,带有区域分割),在一个框架中集成多尺度鉴别特征学习,水平条带分区和语义分割,其中多尺度水平条带分区和全局使用的使用本地特征使框架成为人类姿势变化,遮挡和背景杂波的强大,并且语义分割通过共享的多尺度特征提取来提高人员识别的性能。 MDRS培训结束于结束,具有多任务学习策略,同时考虑三项任务:人员识别,三重态预测和像素明智语义分割。综合实验证实,我们的方法超出了许多方法,并强大地实现了在包括市场-1501,Dukemtmc-Reid和CuHK03的主流评估数据集上的出色性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号