首页> 外文期刊>Pattern recognition letters >User personality prediction based on topic preference and sentiment analysis using LSTM model
【24h】

User personality prediction based on topic preference and sentiment analysis using LSTM model

机译:基于主题偏好与情感分析的用户人格预测使用LSTM模型

获取原文
获取原文并翻译 | 示例

摘要

Based on the original text information, this paper converts the users' theme preferences and text sentiment features into attention information and combines different forms with the LSTM (Long Short-Term Memory) model to predict the personality characteristics of social network users. Finally, the experimental results of multiple groups' show that the Attention-based LSTM model proposed in the paper can achieve better results than the currently popular methods in the recognition of user personality traits and that the model has good generalization ability. (C) 2020 Elsevier B.V. All rights reserved.
机译:基于原始文本信息,本文将用户的主题偏好和文本情绪功能转换为注意信息,并将不同的形式与LSTM(长短期内存)模型相结合,以预测社交网络用户的个性特征。最后,多个群体的实验结果表明,本文提出的基于关注的LSTM模型可以达到比目前流行的方法在识别用户人格性状的情况下实现更好的结果,并且该模型具有良好的泛化能力。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第10期|397-402|共6页
  • 作者单位

    Univ Shanghai Sci & Technol Sch Business Shanghai Peoples R China;

    Shandong Jianzhu Univ Sch Management Engn Jinan Peoples R China;

    Nanjing Univ Finance & Econ Sch Mkt & Logist Management Nanjing Peoples R China;

    Univ Shanghai Sci & Technol Sch Business Shanghai Peoples R China;

    Tongji Univ Sch Econ & Management Shanghai Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Attention-based LSTM; LDA; Big-Five;

    机译:基于注意力的LSTM;LDA;大五;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号