首页> 外文期刊>Pattern recognition letters >Transcoding across 3D shape representations for unsupervised learning of 3D shape feature
【24h】

Transcoding across 3D shape representations for unsupervised learning of 3D shape feature

机译:用于3D形状的3D形状表示三维形状特征的转码

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised learning of 3D shape feature is a challenging yet important problem for organizing a large collection of 3D shape models that do not have annotations. Recently proposed neural network-based approaches attempt to learn meaningful 3D shape feature by autoencoding a single 3D shape representation such as voxel, 3D point set, or multiview 2D images. However, using single shape representation isn't sufficient in training an effective 3D shape feature extractor, as none of existing shape representation can fully describe geometry of 3D shapes by itself. In this paper, we propose to use transcoding across multiple 3D shape representations as the unsupervised method to obtain expressive 3D shape feature. A neural network called Shape Auto-Transcoder (SAT) learns to extract 3D shape features via cross-prediction of multiple heterogeneous 3D shape representations. Architecture and training objective of SAT are carefully designed to obtain effective feature embedding. Experimental evaluation using 3D model retrieval and 3D model classification scenarios demonstrates high accuracy as well as compactness of the proposed 3D shape feature. The code of SAT is available at https://github.com/takahikof/ShapeAutoTranscoder. (C) 2020 Elsevier B.V. All rights reserved.
机译:3D形状特征的无监督学习是一个具有挑战性的,但组织没有注释的大型3D形状模型的一个有挑战性的问题。最近提出的基于神经网络的方法尝试通过自动编码诸如体素,3D点集或多视图2D图像的单个3D形状表示来学习有意义的3D形状特征。然而,使用单个形状表示不足以训练有效的3D形状特征提取器,因为现有的形状表示不能完全描述3D形状的几何形状。在本文中,我们建议使用多个3D形状表示的转码作为获取表达3D形状特征的无监督方法。称为形状自动转码器(SAT)的神经网络学习通过多个异构3D形状表示的交叉预测提取3D形状特征。 SAT的架构和培训目标经过精心设计,以获得有效的特征嵌入。使用3D模型检索和3D模型分类方案的实验评估展示了高精度以及所提出的3D形状的紧凑性。 SAT代码可在https://github.com/takahikof/shapeautranscoder中获得。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号