首页> 外文期刊>Pattern recognition letters >Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor
【24h】

Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor

机译:使用卷积神经网络和最近邻居的古代绘画的可控数字恢复

获取原文
获取原文并翻译 | 示例

摘要

Ancient paintings are valuable culture legacy which can help archaeologists and culture researchers to study history and humanity. Most ancient artworks have damage problems, such as degradation, flaking and cracking. This work presents a novel controllable image inpainting framework with capability of incorporating suggestions from experts, which can help artists envisage how the ancient painting may have looked after a restoration. The framework leverages the content prediction power of deep convolutional neural network (CNN) and the nearest neighbor based pixel matching, where a deep CNN is designed to produce a coarse estimation of complete paintings by filling in missing regions and nearest neighbor based pixel matching is designed to map a mid-frequency estimation obtained from the deep CNN to high quality outputs in a controllable manner. In addition, we design a pixel descriptor using multi-scale neural features from different layers of a pre-trained deep network to capture different amounts of spatial context. Experimental results demonstrate that the proposed approach successfully predicts information in large missing regions and generates controllable high-frequency photo-realistic inpainting results. (C) 2020 Elsevier B.V. All rights reserved.
机译:古代绘画是有价值的文化遗产,可以帮助考古学家和文化研究人员学习历史和人性。大多数古老的艺术品都有损害问题,如劣化,剥落和开裂。这项工作提出了一种新颖的可控图像修复框架,具有纳入专家的建议的能力,这可以帮助艺术家设想恢复后古代绘画的样子。该框架利用深卷积神经网络(CNN)的内容预测功率和基于最近的基于邻居的像素匹配,其中深度CNN被设计为通过填充缺失区域和设计最近的基于邻的像素匹配来产生完整绘画的粗略估计以可控方式映射从深CNN的深度CNN获得的中频估计。另外,我们设计了一种像素描述符,使用来自预先训练的深网络的不同层的多尺度神经特征来捕获不同量的空间上下文。实验结果表明,所提出的方法成功地预测了大缺失区域中的信息,并产生可控的高频照片真实的修复结果。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第5期|158-164|共7页
  • 作者单位

    Southern Univ Sci & Technol SUSTech Acad Adv Interdisciplinary Studies Shenzhen 518055 Peoples R China;

    Southern Univ Sci & Technol SUSTech Shenzhen Engn Lab Intelligent Informat Proc IoT Shenzhen 518055 Peoples R China;

    Southern Univ Sci & Technol SUSTech Shenzhen Engn Lab Intelligent Informat Proc IoT Shenzhen 518055 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image restoration; Ancient paintings; Deep generative networks; Nearest neighbor;

    机译:图像恢复;古代绘画;深生成网络;最近的邻居;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号