首页> 外文期刊>Pattern recognition letters >BitStream: An efficient framework for inference of binary neural networks on CPUs
【24h】

BitStream: An efficient framework for inference of binary neural networks on CPUs

机译:比特流:高效推论CPU上的二元神经网络的有效框架

获取原文
获取原文并翻译 | 示例

摘要

Convolutional Neural Networks (CNN) has been well-studied and widely used in the field of pattern recognition. Many pattern recognition algorithms need features extracted from CNN models to adapt to complex tasks, such as image classification, object detection, natural language processing and so on. However, to deal with more and more complex tasks, modern CNN models are becoming larger and larger, contain large number of parameters and computation, leading to high consumption of memory, computational and power resources during inference. This makes it difficult to run CNN based applications in real time on mobile devices, where memory, computational and power resources are limited. Binarization of neural networks is proposed to reduce memory and computational complexity of CNN. However, traditional implementations of Binary Neural Networks (BNN) follow the conventional im2col-based convolution computation flow, which is widely used in floating-point networks but not friendly enough to cache when it comes to binarized neural networks. In this paper, we propose BitStream, a general architecture for efficient inference of BNN on CPUs. In BitStream, we propose a simple but novel computation flow for BNN. Unlike existing implementations of BNN, in BitStream, all the layers, including convolutional layers, binarization layers and pooling layers are all calculated in binary precision. Comprehensive analyses demonstrate that our proposed computation flow consumes less memory during inference of BNN, and it's friendly to cache because of its continuous memory access. (C) 2019 Published by Elsevier B.V.
机译:卷积神经网络(CNN)已经深入研究,广泛用于模式识别领域。许多模式识别算法需要从CNN模型中提取的功能,以适应复杂任务,例如图像分类,对象检测,自然语言处理等。然而,为了处理越来越复杂的任务,现代CNN模型变得越来越大,较大,包含大量参数和计算,导致推理期间的存储器,计算和电力资源的高消耗。这使得难以在移动设备上实时运行基于CNN的应用,其中存储器,计算和功率资源有限。提出了神经网络的二值化以降低CNN的内存和计算复杂性。然而,二元神经网络(BNN)的传统实现遵循传统的基于IM2Col的卷积计算流程,该计算流量广泛用于浮点网络,但在涉及二金属化神经网络时足以缓存。在本文中,我们提出比特流,是CPU上BNN高效推动的一般架构。在比特流中,我们提出了一种简单但新颖的BNN计算流程。与BNN的现有实现不同,在比特流中,所有层,包括卷积层,二值化层和池池层都以二进制精度计算。综合分析表明,我们所提出的计算流程在BNN推动期间消耗较少的内存,并且由于其连续的存储器访问,它对缓存很友好。 (c)2019年由elestvier b.v发布。

著录项

  • 来源
    《Pattern recognition letters》 |2019年第7期|303-309|共7页
  • 作者单位

    Harbin Univ Sci & Technol Dept Automat Harbin Heilongjiang Peoples R China;

    Harbin Univ Sci & Technol Dept Automat Harbin Heilongjiang Peoples R China|Chinese Acad Sci Natl Lab Pattern Recoginit Inst Automat Beijing Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recoginit Inst Automat Beijing Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recoginit Inst Automat Beijing Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recoginit Inst Automat Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Convolutional neural networks; Binary neural networks; Image classification;

    机译:卷积神经网络;二元神经网络;图像分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号