首页> 外文期刊>Pattern recognition letters >Multi-task learning for object keypoints detection and classification
【24h】

Multi-task learning for object keypoints detection and classification

机译:用于目标关键点检测和分类的多任务学习

获取原文
获取原文并翻译 | 示例

摘要

Object keypoints detection and classification are both central research topics in computer vision. Due to their wide range potential applications in the real world, substantial efforts have been taken to advance their performance. However, these two related tasks are mainly treated separately in previous works. We argue that keypoints detection and classification can be complementary tasks and beneficial to each other. Knowing the category of a object is able to reduce the searching space of keypoints detection models and facilitate more precise localization. On the other hand, having the knowledge of object keypoints can make classification models pay more attention on areas that are more associated with the object, which will inevitably promote classification accuracy. Embracing this observation, we propose to model keypoints detection and classification in a multi-task learning framework. Specifically, a multi-task deep network is designed and trained to conduct both tasks, where we devise the model structure delicately to carry out sufficient training of both tasks. Extensive experiments are set up on the AIFASHION DATASET and Human3.6M DATASET to validate our proposal, we show that our algorithm outperforms separate models trained individually on each task. (C) 2018 Elsevier B.V. All rights reserved.
机译:对象关键点的检测和分类都是计算机视觉中的中心研究主题。由于它们在现实世界中具有广泛的潜在应用,因此已进行了大量努力来提高其性能。但是,这两个相关任务在以前的工作中主要分开处理。我们认为,关键点检测和分类可以是互补的任务,并且可以互惠互利。知道对象的类别能够减少关键点检测模型的搜索空间并有助于更精确的定位。另一方面,了解对象关键点可以使分类模型更多地关注与对象相关的区域,这将不可避免地提高分类的准确性。考虑到这一点,我们建议在多任务学习框架中为关键点检测和分类建模。具体来说,设计并训练了多任务深度网络来执行这两项任务,在此我们精心设计模型结构以对这两项任务进行足够的培训。在AIFASHION数据集和Human3.6M数据集上进行了广泛的实验以验证我们的建议,我们证明了我们的算法优于在每个任务上单独训练的单独模型。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第2期|182-188|共7页
  • 作者

  • 作者单位

    Nanjing Univ Sci & Technol PCA Lab Key Lab Intelligent Percept & Syst High Dimens In Sch Comp Sci & Engn Minist Educ Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China|Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    Nanjing Univ Sci & Technol PCA Lab Key Lab Intelligent Percept & Syst High Dimens In Sch Comp Sci & Engn Minist Educ Nanjing 210094 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Object keypoints detection; Classification; Multi-task learning;

    机译:对象关键点检测;分类;多任务学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号