首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Multi-Task Structure-Aware Context Modeling for Robust Keypoint-Based Object Tracking
【24h】

Multi-Task Structure-Aware Context Modeling for Robust Keypoint-Based Object Tracking

机译:基于鲁棒关键点的对象跟踪的多任务结构感知上下文建模

获取原文
获取原文并翻译 | 示例

摘要

In the fields of computer vision and graphics, keypoint-based object tracking is a fundamental and challenging problem, which is typically formulated in a spatio-temporal context modeling framework. However, many existing keypoint trackers are incapable of effectively modeling and balancing the following three aspects in a simultaneous manner: temporal model coherence across frames, spatial model consistency within frames, and discriminative feature construction. To address this problem, we propose a robust keypoint tracker based on spatio-temporal multi-task structured output optimization driven by discriminative metric learning. Consequently, temporal model coherence is characterized by multi-task structured keypoint model learning over several adjacent frames; spatial model consistency is modeled by solving a geometric verification based structured learning problem; discriminative feature construction is enabled by metric learning to ensure the intra-class compactness and inter-class separability. To achieve the goal of effective object tracking, we jointly optimize the above three modules in a spatio-temporal multi-task learning scheme. Furthermore, we incorporate this joint learning scheme into both single-object and multi-object tracking scenarios, resulting in robust tracking results. Experiments over several challenging datasets have justified the effectiveness of our single-object and multi-object trackers against the state-of-the-art.
机译:在计算机视觉和图形领域,基于关键点的对象跟踪是一个基本且具有挑战性的问题,通常在时空上下文建模框架中提出。但是,许多现有的关键点跟踪器无法以同时的方式有效地建模和平衡以下三个方面:跨帧的时间模型一致性,帧内的空间模型一致性以及区分性特征构造。为了解决这个问题,我们提出了一个基于时空多任务结构化输出优化的鲁棒性关键点跟踪器,该优化由判别式度量学习驱动。因此,时间模型一致性的特征是在多个相邻帧上学习多任务结构的关键点模型。通过解决基于几何验证的结构化学习问题来建模空间模型的一致性;度量学习可实现区分性特征构造,以确保类内部的紧凑性和类间的可分离性。为了实现有效的目标跟踪,我们在时空多任务学习方案中共同优化了上述三个模块。此外,我们将此联合学习方案结合到单对象和多对象跟踪方案中,从而获得了可靠的跟踪结果。在几个具有挑战性的数据集上进行的实验证明了我们的单对象和多对象跟踪器相对于最新技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号