首页> 外文期刊>Pattern recognition letters >LPR-Net: Recognizing Chinese license plate in complex environments
【24h】

LPR-Net: Recognizing Chinese license plate in complex environments

机译:LPR-Net:在复杂环境中识别中国车牌

获取原文
获取原文并翻译 | 示例

摘要

License plate recognition (LPR) technology has been attracting increasing interest during recent years for its exclusive role in real world intelligent traffic management systems. Owing to its importance, numerous LPR methods have been developed. These methods are generally composed of three processing steps, i.e. license plate location, character segmentation and character recognition. However, the three-step scheme always yields unsatisfactory recognition performance in challenging complex environment like uneven illumination, adverse atmospheric conditions, complex backgrounds, unclear vehicle plates, low-quality surveillance camera, etc. In such scenes, the obtained license plates are usually not clear, which will cause imprecise results of localization and segmentation. Consequently, the recognition capacity is inadequate as its performance highly depends on the effects of localization and segmentation. To address these challenges, we propose a novel Chinese vehicle license plate recognition method to directly recognize license plate through an end-to-end deep learning architecture named license plate recognition net (LPR-Net). The LPR-Net is a hybrid deep architecture that consists of a residual error network for extracting basic features, a multi-scale net for extracting multi-scale features, a regression net for locating plate and characters, and a classification net for recognition. Moreover, an effective scheme based on batch normalization is used to accelerate training speed in the learning procedure. Extensive experiments demonstrate that the proposed method achieves excellent recognition accuracy and works more robustly and efficiently compared with the state-of-the-art methods in complex environments. (C) 2018 Elsevier B.V. All rights reserved.
机译:近年来,车牌识别(LPR)技术因其在现实世界的智能交通管理系统中的独特作用而引起了越来越多的兴趣。由于其重要性,已经开发了许多LPR方法。这些方法通常由三个处理步骤组成,即车牌定位,字符分割和字符识别。但是,在挑战性的复杂环境(例如不均匀的光照,不利的大气条件,复杂的背景,不清晰的车牌,低质量的监控摄像头等)中,三步方案始终无法获得令人满意的识别性能。在这种情况下,获得的车牌通常不是清晰,这将导致定位和细分的结果不准确。因此,识别能力不足,因为其性能高度依赖于定位和分割的效果。为了应对这些挑战,我们提出了一种新颖的中国车辆牌照识别方法,该方法可以通过名为车牌识别网络(LPR-Net)的端到端深度学习架构直接识别车牌。 LPR-Net是一种混合深度体系结构,包括用于提取基本特征的残差网络,用于提取多尺度特征的多尺度网络,用于定位标牌和字符的回归网以及用于识别的分类网。此外,基于批归一化的有效方案被用来加快学习过程中的训练速度。大量的实验表明,与复杂环境中的最新方法相比,该方法具有出色的识别精度,并且更加健壮和高效。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2020年第2期|148-156|共9页
  • 作者

  • 作者单位

    Xidian Univ Sch Comp Sci & Technol Xian 710071 Peoples R China|Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    Xidian Univ Sch Comp Sci & Technol Xian 710071 Peoples R China;

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China|Nanjing Univ Sci & Technol Sch Comp Sci & Engn Minist Educ Key Lab Intelligent Percept & Syst High Dimens In Nanjing 210094 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    License plate recognition; Deep neural network; License plate location; Character segmentation; Character recognition;

    机译:车牌识别;深度神经网络车牌位置;字符分割;字符识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号