首页> 外文期刊>Pattern recognition letters >Supervised non-parametric discretization based on Kernel density estimation
【24h】

Supervised non-parametric discretization based on Kernel density estimation

机译:基于核密度估计的有监督非参数离散

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, machine learning algorithms can be found in many applications where the classifiers play a key role. In this context, discretizing continuous attributes is a common step previous to classification tasks, the main goal being to retain as much discriminative information as possible. In this paper, we propose a supervised univariate non-parametric discretization algorithm which allows the use of a given supervised score criterion for selecting the best cut points. The candidate cut points are evaluated by computing the selected score value using kernel density estimation. The computational complexity of the proposed procedure is O(NlogN), where N is the length of the data. Our proposed algorithm generates a low complexity in discretization policies while retaining the discriminative information of the original continuous variables. In order to assess the validity of the proposed method, a set of real and artificial datasets has been used and the results show that the algorithm provides competitive results in terms of performance, a low complexity in the discretization policies and a high performance. (C) 2019 Elsevier B.V. All rights reserved.
机译:如今,机器学习算法可以在分类器起关键作用的许多应用中找到。在这种情况下,离散化连续属性是分类任务之前的常见步骤,主要目标是保留尽可能多的歧视性信息。在本文中,我们提出了一种监督单变量非参数离散化算法,该算法允许使用给定的监督评分标准来选择最佳切入点。通过使用核密度估计计算选定的分数值来评估候选切点。所提出过程的计算复杂度为O(NlogN),其中N是数据的长度。我们提出的算法在保留原始连续变量的判别信息的同时,在离散化策略中产生了较低的复杂度。为了评估该方法的有效性,使用了一组真实的和人工的数据集,结果表明该算法在性能,离散化策略的低复杂度和高性能方面提供了有竞争力的结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2019年第12期|496-504|共9页
  • 作者单位

    Univ Basque Country UPV EHU Dept Comp Sci & Artificial Intelligence Intelligent Syst Grp Manuel De Lardizabal 20018 Donostia San Se Spain|IK4 Ikerlan Technol Res Ctr Dependable Embedded Syst Area Gipuzkoa 20500 Spain;

    Univ Basque Country UPV EHU Dept Comp Sci & Artificial Intelligence Intelligent Syst Grp Manuel De Lardizabal 20018 Donostia San Se Spain;

    Basque Ctr Appl Math Mazarredo Zumarkalea 48009 Bilbo Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discretization; Supervised; Non-parametric; Kernel density;

    机译:离散化;有监督非参数内核密度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号