首页> 外文期刊>Pattern recognition letters >Bayesian receiver operating characteristic metric for linear classifiers
【24h】

Bayesian receiver operating characteristic metric for linear classifiers

机译:线性分类器的贝叶斯接收机工作特性度量

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel classifier accuracy metric: the Bayesian Area Under the Receiver Operating Characteristic Curve (CBAUC). The method estimates the area under the ROC curve and is related to the recently proposed Bayesian Error Estimator. The metric can assess the quality of a classifier using only the training dataset without the need for computationally expensive cross-validation. We derive a closed-form solution of the proposed accuracy metric for any linear binary classifier under the Gaussianity assumption, and study the accuracy of the proposed estimator using simulated and real-world data. These experiments confirm that the closed-form CBAUC is both faster and more accurate than conventional AUC estimators. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们提出了一种新颖的分类器精度度量:接收器工作特征曲线(CBAUC)下的贝叶斯区域。该方法估计ROC曲线下的面积,并且与最近提出的贝叶斯误差估计器有关。度量标准可以仅使用训练数据集来评估分类器的质量,而无需计算上昂贵的交叉验证。我们在高斯假设下,针对任何线性二元分类器,导出了所提出的精度度量的封闭形式解决方案,并使用模拟和真实数据研究了所提出的估计器的精度。这些实验证实,封闭形式的CBAUC比常规AUC估计器更快,更准确。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号