首页> 外文期刊>Pattern recognition letters >Distributed person re-identification through network-wise rank fusion consensus
【24h】

Distributed person re-identification through network-wise rank fusion consensus

机译:通过网络等级融合共识对分布式人员进行重新识别

获取原文
获取原文并翻译 | 示例

摘要

The problem of re-identify persons across single disjoint camera-pairs has received great attention from the community. Despite this, when the re-identification process has to be carried out on a wide camera network additional problems arise and deny the direct application of existing solutions. Thus, a different approach has to be considered. In particular, existing approaches have neglected the importance of the network topology (i.e., the configuration of the monitored area) in such a process. To try filling such a gap, we propose a distributed person re-identification framework which brings in the following contributions: (i) a weighted camera matching cost that measures the re-identification performance between cameras in the network; (ii) a derivation of the distance vector algorithm that yields to network topology learning and allows us to prioritize and limit the cameras inquired for the re-identification; (iii) a network consensus weighted rank fusion solution that allows us to perform the re-identification in a robust fashion. Results on four benchmark datasets show that the proposed approach brings to significant network-wise re-identification improvements. (C) 2019 Elsevier B.V. All rights reserved.
机译:在单个不相交的摄像机对之间重新识别人员的问题已受到社区的极大关注。尽管如此,当必须在广泛的摄像机网络上执行重新识别过程时,仍会出现其他问题,并导致无法直接应用现有解决方案。因此,必须考虑不同的方法。特别地,现有方法已经忽略了在这种过程中网络拓扑结构(即,被监视区域的配置)的重要性。为了弥补这一空白,我们提出了一个分布式人员重新识别框架,该框架带来以下贡献:(i)加权摄像机匹配成本,用于衡量网络中摄像机之间的重新识别性能; (ii)推导距离矢量算法,该算法可用于网络拓扑学习,并允许我们确定优先级并限制用于重新识别的摄像机; (iii)网络共识加权秩融合解决方案,使我们能够以可靠的方式执行重新识别。在四个基准数据集上的结果表明,所提出的方法带来了重大的网络方面的重新识别改进。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号