首页> 外文期刊>Pattern recognition letters >Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor
【24h】

Probabilistic identification of sit-to-stand and stand-to-sit with a wearable sensor

机译:使用可穿戴式传感器的坐姿和坐姿的概率识别

获取原文
获取原文并翻译 | 示例

摘要

Identification of human movements is crucial for the design of intelligent devices capable to provide assistance. In this work, a Bayesian formulation, together with a sequential analysis method, is presented for identification of sit-to-stand (SiSt) and stand-to-sit (StSi) activities. This method performs autonomous iterative accumulation of sensor measurements and decision-making processes, while dealing with noise and uncertainty present in sensors. First, the Bayesian formulation is able to identify sit, transition and stand activity states. Second, the transition state, divided into transition phases, is used to identify the state of the human body during SiSt and StSi. These processes employ acceleration signals from an inertial measurement unit attached to the thigh of participants. Validation of our method with experiments in offline, real-time and a simulated environment, shows its capability to identify the human body during SiSt and StSi with an accuracy of 100% and mean response time of 50 ms (5 sensor measurements). In the simulated environment, our approach shows its potential to interact with low-level methods required for robot control. Overall, this work offers a robust framework for intelligent and autonomous systems, capable to recognise the human intent to rise from and sit on a chair, which is essential to provide accurate and fast assistance. (C) 2018 Elsevier B.V. All rights reserved.
机译:识别人员的动作对于设计能够提供帮助的智能设备至关重要。在这项工作中,提出了一种贝叶斯公式,以及一种顺序分析方法,用于识别从站到站(SiSt)和从站到站(StSi)活动。该方法执行传感器测量和决策过程的自主迭代累积,同时处理传感器中存在的噪声和不确定性。首先,贝叶斯公式能够识别就座,过渡和站立状态。第二,过渡状态分为过渡阶段,用于识别SiSt和StSi期间的人体状态。这些过程采用来自安装在参与者大腿上的惯性测量单元的加速度信号。通过在离线,实时和模拟环境中进行的实验对我们的方法进行的验证表明,该方法能够在SiSt和StSi期间识别人体,其准确度为100%,平均响应时间为50 ms(5个传感器测量值)。在模拟环境中,我们的方法显示了其与机器人控制所需的低级方法交互的潜力。总体而言,这项工作为智能和自主系统提供了一个强大的框架,能够识别人类从椅子上抬起并坐在椅子上的意图,这对于提供准确,快速的帮助至关重要。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号