首页> 外文期刊>Pattern recognition letters >Combining global and minutia deep features for partial high-resolution fingerprint matching
【24h】

Combining global and minutia deep features for partial high-resolution fingerprint matching

机译:结合全局和细节深度特征,实现部分高分辨率指纹匹配

获取原文
获取原文并翻译 | 示例

摘要

On mobile devices, the limited area of fingerprint sensors brings demand of partial fingerprint matching. Existing fingerprint authentication algorithms are mainly based on handcrafted features, such as minutiae topological structure and ridge patterns. Their accuracy degrades significantly for partial-to-partial matching due to the lack of features. Optical fingerprint sensor can capture very high-resolution fingerprints (2000dpi) with rich details as pores, scars, shape of ridges, etc. These details can cover the shortage of minutiae insufficiency. However, it is challenging to make good use of them, since they are irregular and unstable. In this paper, we propose a novel matching algorithm for such fingerprints by taking advantage of deep learned features. Our model employs a couple of deep convolutional neural networks to learn both high-level global feature and low-level minutia feature. Then we use score level fusion of global similarity and spectral correspondence of minutiae matching. Experiments indicate that our model outperforms several state-of-the-art approaches. (C) 2017 Elsevier B.V. All rights reserved.
机译:在移动设备上,指纹传感器的有限区域带来了部分指纹匹配的需求。现有的指纹认证算法主要基于手工制作的特征,例如细节的拓扑结构和脊纹。由于缺少功能,它们对于部分到部分匹配的准确性会大大降低。光学指纹传感器可以捕获非常高分辨率的指纹(2000dpi),具有丰富的细节,例如毛孔,疤痕,山脊的形状等。这些细节可以弥补细节不足的不足。但是,由于它们是不规则且不稳定的,因此充分利用它们具有挑战性。在本文中,我们利用深度学习功能为此类指纹提出了一种新颖的匹配算法。我们的模型采用了两个深层卷积神经网络来学习高级全局特征和低级细节特征。然后,我们使用全局相似性的得分级别融合和细节匹配的频谱对应性。实验表明,我们的模型优于几种最先进的方法。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2019年第3期|139-147|共9页
  • 作者单位

    Peking Univ, Sch Elect Engn & Comp Sci, Dept Machine Intelligence, Key Lab Machine Percept,Minist Educ, Beijing 100871, Peoples R China;

    Peking Univ, Sch Elect Engn & Comp Sci, Dept Machine Intelligence, Key Lab Machine Percept,Minist Educ, Beijing 100871, Peoples R China;

    Peking Univ, Sch Elect Engn & Comp Sci, Dept Machine Intelligence, Key Lab Machine Percept,Minist Educ, Beijing 100871, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fingerprint matching; Deep learned feature; Partial high-resolution fingerprint; Combined matching;

    机译:指纹匹配;深度学习功能;部分高分辨率指纹;组合匹配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号