首页> 外文期刊>Pattern recognition letters >Classification of myocardial infarction with multi-lead ECG signals and deep CNN
【24h】

Classification of myocardial infarction with multi-lead ECG signals and deep CNN

机译:多导联心电图信号和深层CNN对心肌梗死的分类

获取原文
获取原文并翻译 | 示例

摘要

Myocardial infarction (MI), commonly known as heart attack, causes irreversible damage to heart muscles and even leads to death. Rapid and accurate diagnosis of MI is critical to avoid death. Blood tests and electrocardiogram (ECG) signals are used to diagnose acute MI. However, for an increase in blood enzyme values, a certain time must pass after the attack. This time lag may delay MI diagnosis. Hence, ECG diagnosis is still very important. Manual ECG interpretation requires expertise and is prone to inter-observer variability. Therefore, computer aided diagnosis may be useful in automatic detection of MI on ECG. In this study, a deep learning model with an end-to-end structure on the standard 12-lead ECG signal for the diagnosis of MI is proposed. For this purpose, the most commonly used technique, convolutional neural network (CNN) is used. Our trained CNN model with the proposed architecture yielded impressive accuracy and sensitivity performance over 99.00% for MI diagnosis on all ECG lead signals. Thus, the proposed model has the potential to provide high performance on MI detection which can be used in wearable technologies and intensive care units. (C) 2019 Elsevier B.V. All rights reserved.
机译:心肌梗塞(MI),通常称为心脏病发作,会对心肌造成不可逆转的损害,甚至导致死亡。快速而准确的MI诊断对于避免死亡至关重要。血液测试和心电图(ECG)信号用于诊断急性MI。但是,要增加血液酶值,必须在发作后经过一定时间。此时间延迟可能会延迟MI诊断。因此,心电图诊断仍然非常重要。手动心电图解释需要专业知识,并且容易出现观察者之间的差异。因此,计算机辅助诊断可能对自动检测ECG上的MI有用。在这项研究中,提出了一种在标准12导联ECG信号上具有端到端结构的深度学习模型,用于诊断MI。为此,使用了最常用的技术,即卷积神经网络(CNN)。我们训练有素的CNN模型具有拟议的体系结构,对于所有ECG前导信号的MI诊断,其准确性和灵敏度性能均达到99.00%以上。因此,提出的模型具有提供可用于可穿戴技术和重症监护室的MI检测高性能的潜力。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2019年第5期|23-30|共8页
  • 作者单位

    Munzur Univ, Dept Comp Engn, TR-62000 Tunceli, Turkey;

    Munzur Univ, Dept Comp Engn, TR-62000 Tunceli, Turkey;

    Munzur Univ, Dept Comp Engn, TR-62000 Tunceli, Turkey;

    Natl Heart Ctr Singapore, Dept Cardiol, Singapore, Singapore|Duke NUS Med Sch, Singapore, Singapore;

    Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore, Singapore|Singapore Sch Social Sci, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore|Taylors Univ, Fac Hlth & Med Sci, Sch Med, Subang Jaya 47500, Malaysia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Myocardial infarction; Deep learning; Multi-lead ECG; Biomedical signal;

    机译:心肌梗塞;深度学习;多导联心电图;生物医学信号;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号