首页> 外文期刊>Pattern recognition letters >Data augmentation and directional feature maps extraction for in-air handwritten Chinese character recognition based on convolutional neural network
【24h】

Data augmentation and directional feature maps extraction for in-air handwritten Chinese character recognition based on convolutional neural network

机译:基于卷积神经网络的空中手写汉字识别数据扩充与方向特征图提取

获取原文
获取原文并翻译 | 示例

摘要

Recently convolutional neural networks (CNN) have demonstrated remarkable performance in various classification problems. In this paper, we also introduce CNN into in-air handwritten Chinese character recognition (IAHCCR) and propose new directional feature maps, named bend directional feature maps. Then we integrate the combination of various types of directional feature maps with the CNN and obtain better recognition performance compared with other methods reported for IAHCCR. For further improving recognition rate, we propose a new data augmentation method dedicated to in-air handwritten Chinese characters. The proposed data augmentation method combines global transformation with local distortion and effectively enlarges the training dataset. Experimental results demonstrate that our proposed methods can greatly improve the recognition rate for IAHCCR. (C) 2018 Elsevier B.V. All rights reserved.
机译:最近,卷积神经网络(CNN)在各种分类问题中都表现出了卓越的性能。在本文中,我们还将CNN引入了空中手写汉字识别(IAHCCR),并提出了新的方向特征图,称为弯曲方向特征图。然后,我们将各种类型的方向特征图与CNN集成在一起,与针对IAHCCR报告的其他方法相比,获得了更好的识别性能。为了进一步提高识别率,我们提出了一种专用于空中手写汉字的新数据增强方法。所提出的数据增强方法将全局变换与局部失真相结合,并有效地扩大了训练数据集。实验结果表明,我们提出的方法可以大大提高对IAHCCR的识别率。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号