首页> 外文期刊>Pattern recognition letters >Biometrics and forensics integration using deep multi-modal semantic alignment and joint embedding
【24h】

Biometrics and forensics integration using deep multi-modal semantic alignment and joint embedding

机译:使用深度多模式语义对齐和联合嵌入进行生物识别和法医集成

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes collaborative and context-aware visual question answering (C2VQA) for multi-modal information channels integration, and details its particular mapping and realization for biometrics forensic integration (BFI) using Show and Tell like architectures. C2VQA, which expands on Visual Query Answering (VQA) and the Visual Turing Test (VIT), engages deep semantic alignment and joint embedding using deep learning (DL) for image analysis, vector space as skip-grams and long-term dependencies as gated recurrent networks for context prediction, and multi-strategy learning including conformal prediction for control and meta-reasoning. C2VQA would engage in purposeful dialog to address and correct for misinformation and uncertainty and considers behavior to model realistic VQA problems characteristic of open rather than closed set VQA. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文提出了用于多模式信息渠道集成的协作式和上下文感知的视觉问题解答(C2VQA),并详细介绍了其特定的映射和使用Show and Tell like体系结构的生物识别法医集成(BFI)的实现。 C2VQA在Visual Query Answering(VQA)和Visual Turing Test(VIT)的基础上进行了扩展,使用深度学习(DL)进行深度语义对齐和联合嵌入,以进行图像分析,矢量空间作为跳跃图,长期依赖项作为门控用于上下文预测的递归网络,以及包括控制和元推理的共形预测在内的多策略学习。 C2VQA会进行有目的的对话,以解决和纠正错误信息和不确定性,并考虑对行为进行建模,以模拟开放式VQA而非封闭式VQA的实际VQA问题。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号