首页> 外文期刊>Pattern recognition letters >Improving the experimental analysis of tampered image detection algorithms for biometric systems
【24h】

Improving the experimental analysis of tampered image detection algorithms for biometric systems

机译:改进生物特征识别系统篡改图像检测算法的实验分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper we deal with the experimental evaluation of tampered image detection algorithms. These algorithms aim at establishing if any manipulation has been carried out on a digital image. In detail, we focus on the evaluation of the CASIA Tampered Image Detection Evaluation (CASIA TIDE) public dataset of images, the de facto standard for evaluating these class of algorithms. Our analysis has been performed using the algorithm of Lin et al. for JPEG tampered image detection as benchmark. The results proved that the images of the dataset contain some statistical artifacts that may help the detection process. To confirm this, we first used this dataset to evaluate the performance of the Lin et al. algorithm. According to our results, the considered algorithm performs very well on this dataset. Some variants of the original algorithm have been developed expressly tuned on these artifacts. These variants performed better than their original counterpart. Then a new unbiased dataset has been assembled and a new set of experiments has been executed with these images. The results showed that the performance of the algorithm and its variants radically decreased, proving that the CASIA TIDE statistical artifacts cause interferences on the detection process. This problem is particularly important in the biometric field, because many image-based biometric systems rely on the assumption that input images have not been manipulated. Indeed, a faithful experimental evaluation must be based on unbiased input dataset to get well founded results. Therefore, the selection of a reliable image tampering detection algorithm is crucial. A preliminary version of this work has been presented in Cattaneo and Roscigno (2014) [6]. (C) 2017 Elsevier B.V. All rights reserved.
机译:在本文中,我们处理了篡改图像检测算法的实验评估。这些算法旨在确定是否已对数字图像执行了任何操作。详细地说,我们专注于图像的CASIA篡改图像检测评估(CASIA TIDE)公共数据集的评估,这是评估此类算法的事实上的标准。我们的分析是使用Lin等人的算法进行的。以JPEG篡改图像检测为基准。结果证明,数据集的图像包含一些统计伪像,可能有助于检测过程。为了证实这一点,我们首先使用该数据集来评估Lin等人的性能。算法。根据我们的结果,所考虑的算法在该数据集上的表现非常好。已针对这些工件明确开发了原始算法的某些变体。这些变体比原始变体表现更好。然后,组装了一个新的无偏数据集,并对这些图像执行了一组新的实验。结果表明,该算法及其变体的性能从根本上降低了,证明了CASIA TIDE统计伪像会对检测过程造成干扰。由于许多基于图像的生物识别系统都依赖于未操纵输入图像的假设,因此该问题在生物识别领域特别重要。确实,忠实的实验评估必须基于无偏的输入数据集才能获得有根据的结果。因此,选择可靠的图像篡改检测算法至关重要。 Cattaneo和Roscigno(2014)提出了这项工作的初步版本[6]。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号