首页> 外文期刊>Pattern recognition letters >Bayesian MLP neural networks for image analysis
【24h】

Bayesian MLP neural networks for image analysis

机译:贝叶斯MLP神经网络用于图像分析

获取原文
获取原文并翻译 | 示例

摘要

We demonstrate the advantages of using Bayesian multi-layer perceptron (MLP) neural networks for image analysis. The Bayesian approach provides consistent way to do inference by combining the evidence from the data to prior knowledge from the problem. A practical problem with MLPs is to select the correct complexity for the model, i.e., the right number of hidden units or correct regularization parameters. The Bayesian approach offers efficient tools for avoiding overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this contribution we review the Bayesian methods for MLPs and present comparison results from two case studies. In the first case, MLPs were used to solve the inverse problem in electrical impedance tomography. The Bayesian MLP provided consistently better results than other methods. In the second case, the goal was to locate trunks of trees in forest scenes. With Bayesian MLP it was possible to use large number of potentially useful features and prior for determining the relevance of the features automatically.
机译:我们展示了使用贝叶斯多层感知器(MLP)神经网络进行图像分析的优势。贝叶斯方法通过将数据的证据与问题的先验知识相结合,提供了一致的推理方法。 MLP的实际问题是为模型选择正确的复杂度,即正确数量的隐藏单元或正确的正则化参数。贝叶斯方法为即使使用非常复杂的模型也能避免过拟合提供了有效的工具,并有助于估计结果的置信区间。在本文中,我们回顾了MLP的贝叶斯方法,并给出了两个案例研究的比较结果。在第一种情况下,MLP用于解决电阻抗断层扫描中的反问题。贝叶斯MLP始终提供比其他方法更好的结果。在第二种情况下,目标是在森林场景中定位树木的树干。使用贝叶斯MLP,可以使用大量潜在有用的功能,并且可以事先确定功能的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号