首页> 外文期刊>Pattern recognition letters >Object recognition with stereo vision and geometric hashing
【24h】

Object recognition with stereo vision and geometric hashing

机译:具有立体视觉和几何哈希的对象识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper we demonstrate a method to recognize 3D objects and to estimate their pose. For that purpose we use a combination of stereo vision and geometric hashing. Stereo vision is used to generate a large number of 3D low level features, of which many are spurious because at that stage of the process the correspondence problem is not solved as yet. However, geometric hashing is used to discriminate the true features from the spurious one. Geometric hashing is also the basis of a voting mechanism for the recognition of the objects in the scene. The speed of the geometric hashing algorithm helps to overcome the computational burden imposed by the correspondence problem in stereo vision. We look at different hash strategies using both points and lines features and compare our 3D approach to a recognition system based on 2D features. Experiments show that, although out 3D approach generates much more spurious scene features, it is just as fast and more reliable than the 2D system.
机译:在本文中,我们演示了一种识别3D对象并估计其姿势的方法。为此,我们结合使用了立体视觉和几何哈希。立体视觉用于生成大量3D低层特征,其中许多是虚假的,因为在该过程的那个阶段尚未解决对应问题。但是,使用几何哈希将真实特征与虚假特征区分开。几何哈希也是用于识别场景中对象的投票机制的基础。几何哈希算法的速度有助于克服立体视觉中对应问题所带来的计算负担。我们使用点和线特征研究了不同的哈希策略,并将我们的3D方法与基于2D特征的识别系统进行了比较。实验表明,尽管3D方法生成的杂散场景特征要多得多,但它与2D系统一样快且更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号