首页> 外文期刊>Pattern recognition letters >Local fuzzy PCA based GMM with dimension reduction on speaker identification
【24h】

Local fuzzy PCA based GMM with dimension reduction on speaker identification

机译:基于局部模糊PCA的GMM说话人识别算法

获取原文
获取原文并翻译 | 示例

摘要

To reduce the high dimensionality required for training of feature vectors in speaker identification, we propose an efficient GMM based on local PCA with fuzzy clustering. The proposed method firstly partitions the data space into several disjoint clusters by fuzzy clustering, and then performs PCA using the fuzzy covariance matrix on each cluster. Finally, the GMM for speaker is obtained from the transformed feature vectors with reduced dimension in each cluster. Compared to the conventional GMM with diagonal covariance matrix, the proposed method shows faster result with less storage maintaining same performance.
机译:为了减少说话人识别中训练特征向量所需的高维,我们提出了一种基于局部PCA和模糊聚类的有效GMM。所提出的方法首先通过模糊聚类将数据空间划分为几个不相交的聚类,然后在每个聚类上使用模糊协方差矩阵执行PCA。最后,从每个簇中具有减小维数的变换特征向量中获得说话人的GMM。与具有对角协方差矩阵的常规GMM相比,该方法显示了更快的结果,更少的存储保持了相同的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号