首页> 外文期刊>Pattern recognition letters >Bayesian network classification using spline-approximated kernel density estimation
【24h】

Bayesian network classification using spline-approximated kernel density estimation

机译:使用样条近似核密度估计的贝叶斯网络分类

获取原文
获取原文并翻译 | 示例

摘要

The likelihood for patterns of continuous features needed for probabilistic inference in a Bayesian network classifier (BNC) may be computed by kernel density estimation (KDE), letting every pattern influence the shape of the probability density. Although usually leading to accurate estimation, the KDE suffers from computational cost making it unpractical in many real-world applications. We smooth the density using a spline thus requiring for the estimation only very few coefficients rather than the whole training set allowing rapid implementation of the BNC without sacrificing classifier accuracy. Experiments conducted over a several real-world databases reveal acceleration in computational speed, sometimes in several orders of magnitude, in favor of our method making the application of KDE to BNCs practical.
机译:可以通过核密度估计(KDE)计算贝叶斯网络分类器(BNC)中概率推论所需的连续特征模式的可能性,让每种模式都影响概率密度的形状。尽管通常会导致准确的估计,但KDE却遭受了计算成本的困扰,使其在许多实际应用中不切实际。我们使用样条曲线对密度进行平滑处理,因此仅需要估计很少的系数,而无需估计整个训练集即可在不牺牲分类器准确性的情况下快速实现BNC。在多个实际数据库上进行的实验表明,计算速度的加速有时达到了几个数量级,这有利于我们使KDE在BNC上的应用变得可行的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号