首页> 外文期刊>Pattern recognition letters >An agent based evolutionary approach to path detection for off-road vehicle guidance
【24h】

An agent based evolutionary approach to path detection for off-road vehicle guidance

机译:基于Agent的道路车辆导航路径检测进化方法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes an ant colony optimization approach adopted to decide on road-borders to automatically guide a vehicle developed for the DARPA Grand Challenge 2004, available from; < http://www.darpa.mil/grandchallenge >. Due to the complexity of off-road trails and different natural boundaries of the trails, lane markers detection schemes cannot work. Hence border detection is based on ant colony optimization technique. Two borders at two sides of the road (as seen by a camera fixed on the vehicle) are tracked by two agent colonies: agents' moves are inspired by the behaviors of biological ants when trying to find the shortest path from nest to food. Reinforcement learning is done by pheromone updating based on some heuristic function and by changing the heuristic balancing parameters with the experience over the last tracked results. Shadow removal has also been introduced to increase robustness. Results on different off-road environments, as provided in the DARPA Grand Challenge 2004, have been shown in the form of correct detections, false positives and false negatives and their dependence on number of ant-agents and balancing edge-exploitation and pher-omone-exploitation.
机译:本文介绍了一种蚁群优化方法,该方法可用于确定路障,以自动引导为DARPA 2004年挑战赛开发的车辆。 。由于越野步道的复杂性以及步道的不同自然界线,车道标记检测方案无法工作。因此,边界检测是基于蚁群优化技术的。道路两侧的两个边界(如固定在车辆上的摄像机所看到的)由两个特工殖民地追踪:特工的移动是受生物蚂蚁的行为启发而试图寻找从巢到食物的最短路径的。通过基于某些启发式功能的信息素更新并通过改变启发式平衡参数以及最后跟踪结果的经验来进行强化学习。还引入了阴影消除功能以提高鲁棒性。如DARPA Grand Challenge 2004所提供的,在不同越野环境下的结果以正确的检测,假阳性和假阴性及其对蚂蚁代理数量的依赖以及平衡边缘利用和信息素的形式显示出来。 -开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号