首页> 外文期刊>Pattern recognition letters >Fast adaptive LDA using quasi-Newton algorithm
【24h】

Fast adaptive LDA using quasi-Newton algorithm

机译:使用拟牛顿算法的快速自适应LDA

获取原文
获取原文并翻译 | 示例

摘要

A new adaptive algorithm for linear discriminant analysis (LDA) based on the quasi-Newton optimization technique is presented. The proposed algorithm uses the secant method for adaptive computation of the inverse Hessian matrix and the Newton-Raphson method for optimal estimation of the step size at each iteration. Current adaptive method, based on the Newton-Raphson optimization technique, uses a direct calculation of the inverse Hessian matrix, which can be both laborious to calculate and invert for systems with large number of dimensions. The new algorithm has the advantage of automatic optimal selection of the step size using the current data samples and also adaptive computation of the inverse Hessian matrix that overcomes its sensitivity to data condition. Based on the new adaptive algorithm, we present a self-organizing neural network for adaptive computation of the square root of the inverse covariance matrix and use it in cascaded form with a principal component analysis (PCA) network for LDA. Experimental results demonstrated fast convergence and lower computational cost of the new algorithm compared to the adaptive gradient descent and Newton-Raphson LDA algorithms, respectively and justified its advantages for on-line pattern recognition applications with stationary and non-stationary multidimensional input data.
机译:提出了一种基于拟牛顿优化技术的线性判别分析自适应算法。所提出的算法使用割线方法进行逆Hessian矩阵的自适应计算,并使用Newton-Raphson方法进行每次迭代时步长的最佳估计。当前的基于牛顿-拉夫森优化技术的自适应方法,直接使用逆Hessian矩阵进行计算,这对于计算大量维数的系统而言既费力又难以计算和求逆。新算法的优点是可以使用当前数据样本自动最佳选择步长,还可以自适应计算反黑森州矩阵,从而克服了它对数据条件的敏感性。基于新的自适应算法,我们提出了一种自组织神经网络,用于自适应计算逆协方差矩阵的平方根,并将其与用于LDA的主成分分析(PCA)网络以级联形式使用。实验结果表明,与自适应梯度下降算法和牛顿-拉夫森LDA算法相比,该新算法具有快速收敛性和较低的计算成本,并证明了其在具有固定和非固定多维输入数据的在线模式识别应用中的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号