首页> 外文期刊>Pattern recognition letters >Hierarchical classification using a frequency-based weighting and simple visual features
【24h】

Hierarchical classification using a frequency-based weighting and simple visual features

机译:使用基于频率的权重和简单的视觉特征进行分层分类

获取原文
获取原文并翻译 | 示例

摘要

This article describes the use of a frequency-based weighting scheme using low level visual features developed for image retrieval to perform a hierarchical classification of medical images. The techniques are based on a classical tf/idf(term frequency, inverse document frequency) weighting scheme of the GIFT (GNU Image Finding Tool), and perform classification based on kNN (κ-Nearest Neighbors) and voting-based approaches. The features used by the GIFT are very simple giving a global description of the images and local information on fixed regions both for colors and textures. We reused a similar technique as in previous years of ImageCLEF to have a baseline for the retrieval performance over the three years of the medical image annotation task. This allows showing the clear increase in quality of participating research systems over the years. Subsequently, we optimized the retrieval results based on the simple technology used by varying the feature space, the classification method (varying number of neighbors, various voting schemes) and by adding new information such as aspect ratio, which has shown to work well in the past. The results show that the techniques we use have several problems that could not be fully solved through the applied optimizations. Still, optimizations improved results enormously from an error value of 228 to below 150. As a baseline to show the progress of techniques over the years it also works well. Aspect ratio shows to be an important factor to improve results. Performing classification on an axis level performs better than using the entire hierarchy code or not taking hierarchy into account at all. To further improve results, the use of more suitable visual features such as patch histograms or salient point features seems necessary. Small distortions of images of the same class have to be taken into account for very good results. Still, without using any learning technique and high level visual features, the approach performs reasonably well.
机译:本文介绍了基于频率的加权方案的使用,该方案使用为图像检索而开发的低级视觉特征来执行医学图像的分层分类。该技术基于GIFT(GNU图像查找工具)的经典tf / idf(术语频率,文档反频率)加权方案,并基于kNN(κ最近邻)和基于投票的方法进行分类。 GIFT使用的功能非常简单,可以对图像进行全局描述,并在颜色和纹理的固定区域上提供局部信息。我们重用了与ImageCLEF的前几年类似的技术,以为医学图像注释任务三年中的检索性能提供基线。这使得多年来参与研究系统的质量明显提高。随后,我们基于简单的技术优化了检索结果,该技术通过改变特征空间,分类方法(不同的邻居数,各种投票方案)并添加诸如长宽比之类的新信息来证明检索效果良好。过去。结果表明,我们使用的技术存在一些无法通过应用优化完全解决的问题。尽管如此,优化仍然可以将结果从228的错误值极大地改善到150以下。作为多年来显示技术进步的基准,它也可以很好地发挥作用。长宽比是改善结果的重要因素。在轴级别执行分类比使用整个层次结构代码或根本不考虑层次结构要好。为了进一步改善结果,似乎有必要使用更合适的视觉特征,例如斑块直方图或显着点特征。为了获得很好的效果,必须考虑相同类别图像的微小失真。尽管如此,在不使用任何学习技术和高级视觉功能的情况下,该方法仍能很好地执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号