首页> 外文期刊>Pattern recognition letters >Cluster-based visualisation with scatter matrices
【24h】

Cluster-based visualisation with scatter matrices

机译:基于散点矩阵的基于集群的可视化

获取原文
获取原文并翻译 | 示例

摘要

The trace of the scatter matrix, which measures separation between population cohorts, is shown to be strictly preserved by sphering the data followed by a projection onto the space of population means. This result suggests using the space of means as a basis to calculate well-separating lower-dimensional projections of the data, derived from the scatter matrix in the projective space. In particular, it defines an approximation to the canonical decomposition of the scatter matrix that applies for singular covariance matrices. The method is illustrated with reference to k-means clusters in data sets from bioinformatics and marketing.
机译:散布矩阵的痕迹(用于度量人群之间的距离)通过严格地保留数据,然后对数据进行球面投影,然后投影到总体均值空间上,可以严格保留。该结果表明,使用均值空间作为基础来计算数据,这些数据是从投影空间中的散布矩阵派生的,并且可以很好地分离数据的低维投影。特别是,它定义了适用于奇异协方差矩阵的散射矩阵的规范分解的近似值。参考来自生物信息学和市场营销的数据集中的k均值聚类说明了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号