首页> 外文期刊>Pattern recognition letters >Robust fuzzy clustering using mixtures of Student's-t distributions
【24h】

Robust fuzzy clustering using mixtures of Student's-t distributions

机译:混合使用Student-t分布的鲁棒模糊聚类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a robust fuzzy clustering algorithm, based on a fuzzy treatment of finite mixtures of multivariate Student's-t distributions, using the fuzzy c-means (FCM) algorithm. As we experimentally demonstrate, the proposed algorithm, by incorporating the assumptions about the probabilistic nature of the clusters being dirived into the fuzzy clustering procedure, allows for the exploitation of the hard tails of the multivariate Student's-t distribution, to obtain a robust to outliers fuzzy clustering algorithm, offering increased clustering performance comparing to existing FCM-based algorithms. Our experimental results prove that the proposed fuzzy treatment of finite mixtures of Student's-t distributions is more effective comparing to their statistical treatments using EM-type algorithms, while imposing comparable computational loads.
机译:在本文中,我们提出了一种鲁棒的模糊聚类算法,该算法基于模糊C均值(FCM)算法,对多元Student-t分布的有限混合进行模糊处理。正如我们实验证明的那样,所提出的算法通过将关于被推导的聚类的概率性质的假设合并到模糊聚类过程中,从而可以利用多元Student-t分布的硬尾巴来获得对异常值的鲁棒性模糊聚类算法,与现有的基于FCM的算法相比,可提供更高的聚类性能。我们的实验结果证明,与使用EM型算法进行统计处理相比,所提出的Student-t分布有限混合的模糊处理更加有效,同时施加了可比的计算负荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号