首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >A Mixture Model Approach for Formant Tracking and the Robustness of Student's-t Distribution
【24h】

A Mixture Model Approach for Formant Tracking and the Robustness of Student's-t Distribution

机译:共振峰跟踪和学生t分布鲁棒性的混合模型方法

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of robust formant tracking in continuous speech in the presence of additive noise. We propose a new approach based on mixture modeling of the formant contours. Our approach consists of two main steps: (i) Computation of a pyknogram based on multiband amplitude-modulation/frequency-modulation (AM/FM) decomposition of the input speech; and (ii) Statistical modeling of the pyknogram using mixture models. We experiment with both Gaussian mixture model (GMM) and Student's-t mixture model (tMM) and show that the latter is robust with respect to handling outliers in the pyknogram data, parameter selection, accuracy, and smoothness of the estimated formant contours. Experimental results on simulated data as well as noisy speech data show that the proposed tMM-based approach is also robust to additive noise. We present performance comparisons with a recently developed adaptive filterbank technique proposed in the literature and the classical Burg's spectral estimator technique, which show that the proposed technique is more robust to noise.
机译:我们解决了在存在附加噪声的情况下连续语音中鲁棒共振峰跟踪的问题。我们提出了一种基于共振峰轮廓的混合建模的新方法。我们的方法包括两个主要步骤:(i)根据输入语音的多频​​带幅度调制/频率调制(AM / FM)分解计算测功图; (ii)使用混合模型对重压容器进行统计建模。我们对高斯混合模型(GMM)和Student's-t混合模型(tMM)进行了实验,结果表明,后者在处理图形数据,参数选择,准确性和估计共振峰轮廓的平滑度方面具有较强的鲁棒性。在模拟数据和有声语音数据上的实验结果表明,基于tMM的方法对加性噪声也很鲁棒。我们用文献中提出的最近开发的自适应滤波器组技术和经典的伯格频谱估计器技术进行性能比较,这表明提出的技术对噪声更鲁棒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号