首页> 外文期刊>Pattern recognition letters >Anomaly detection in hyperspectral imagery based on maximum entropy and nonparametric estimation
【24h】

Anomaly detection in hyperspectral imagery based on maximum entropy and nonparametric estimation

机译:基于最大熵和非参数估计的高光谱图像异常检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents several maximum entropy and nonparametric estimation detectors (MENEDs) which belong to two categories to detect anomaly targets in hyperspectral imagery. First, probability density of target is estimated using Principle of Maximum Entropy according to the low-probability occurrence of target, which simplifies the generalize likelihood ratio test to merely testing background likelihood. Then considering the high complexity of hyperspectral data, in conjunction with the low-probability occurrence of target, sample-depended multimode model (SDMM) is presented to obtain the probability density of the background. Finally, the estimated probability density of the background is tested to detect targets. The proposed MENEDs greatly depend on hyperspectral data sample, rather than the statistical model, to extract the statistical information, which alleviates statistical model discrepancy and has explicit physical mechanism on detection. Experimental results on visibleear-infrared hyperspectral imagery of type 1 Operational Modular Imaging Spectrometer (OMIS-I) demonstrate that MENEDs perform better than several known detectors, including RX detector (RXD), normalized RXD (NRXD), modified RXD (MRXD), correlation matrix based NRXD (CNRXD), correlation matrix based MRXD (CMRXD), unified target detector (UTD) and low probability detection (LPD).
机译:本文提出了几种最大熵和非参数估计检测器(MENED),它们属于两类,用于检测高光谱图像中的异常目标。首先,根据目标的低概率发生率,使用最大熵原理估计目标的概率密度,从而将广义似然比检验简化为仅测试背景似然。然后考虑到高光谱数据的高复杂性,结合目标的低概率发生,提出了样本依赖多模模型(SDMM)来获得背景的概率密度。最后,测试背景的估计概率密度以检测目标。提出的MENED很大程度上依赖于高光谱数据样本而不是统计模型来提取统计信息,从而减轻了统计模型的差异,并具有明确的物理检测机制。 1型操作模块化成像光谱仪(OMIS-I)的可见/近红外高光谱图像的实验结果表明,MENED的性能优于几种已知的检测器,包括RX检测器(RXD),归一化RXD(NRXD),改进的RXD(MRXD) ,基于相关矩阵的NRXD(CNRXD),基于相关矩阵的MRXD(CMRXD),统一目标检测器(UTD)和低概率检测(LPD)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号