首页> 外文期刊>Pattern recognition letters >An efficient ant colony optimization approach to attribute reduction in rough set theory
【24h】

An efficient ant colony optimization approach to attribute reduction in rough set theory

机译:粗糙集理论中属性约简的有效蚁群优化方法

获取原文
获取原文并翻译 | 示例

摘要

Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we introduce a new approach based on ant colony optimization (ACO) for attribute reduction. To verify the proposed algorithm, numerical experiments are carried out on thirteen small or medium-sized datasets and three gene expression datasets. The results demonstrate that this algorithm can provide competitive solutions efficiently.
机译:粗糙集理论中的属性约简是一种重要的特征选择方法。由于属性约简是一个NP难题,因此有必要研究快速有效的近似算法。在本文中,我们介绍了一种基于蚁群优化(ACO)的属性约简新方法。为了验证所提出的算法,对13个中小型数据集和3个基因表达数据集进行了数值实验。结果表明,该算法可以有效地提供竞争解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号