首页> 外文期刊>Pattern recognition letters >Towards the experimental evaluation of novel supervised fuzzy adaptive resonance theory for pattern classification
【24h】

Towards the experimental evaluation of novel supervised fuzzy adaptive resonance theory for pattern classification

机译:新型监督模糊自适应共振理论在模式分类中的实验评价

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a comparative analysis of novel supervised fuzzy adaptive resonance theory (SF-ART), multilayer perceptron (MLP) and competitive neural trees (CNeT) Networks over three pattern recognition problems. We have used two well-known patterns (IRIS and Vowel data) and a biological data (hydrogen data) to evaluate and check SF-ART stability, reliability, learning speed and computational load. The comparative tests with IRIS, Vowels and H_2 data indicate that the SF-ART is capable to perform with a high classification performance, high learning speed (elapsed time for learning around half second), and very low computational load compared to the well-known neural networks such as MLP and CNeT which need minutes and seconds respectively to learn the training material.
机译:本文针对三种模式识别问题对新型监督模糊自适应共振理论(SF-ART),多层感知器(MLP)和竞争神经树(CNeT)网络进行了比较分析。我们使用了两种众所周知的模式(IRIS和Vowel数据)和生物学数据(氢数据)来评估和检查SF-ART的稳定性,可靠性,学习速度和计算量。与IRIS,Vowels和H_2数据进行的对比测试表明,与众所周知的SF-ART相比,它具有较高的分类性能,较高的学习速度(学习所花费的时间约为半秒)和非常低的计算量MLP和CNeT等神经网络分别需要几分钟和几秒钟来学习培训材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号