首页> 外文期刊>Pattern recognition letters >An iterative approach for fitting multiple connected ellipse structure to silhouette
【24h】

An iterative approach for fitting multiple connected ellipse structure to silhouette

机译:将多个连接的椭圆结构拟合到轮廓的迭代方法

获取原文
获取原文并翻译 | 示例

摘要

In many image processing applications, the structures conveyed in the image contour can often be described by a set of connected ellipses. Previous fitting methods to align the connected ellipse structure with a contour, in general, lack a continuous solution space. In addition, the solution obtained often satisfies only a partial number of ellipses, leaving others with poor fits. In this paper, we address these two problems by presenting an iterative framework for fitting a 2D silhouette contour to a pre-specified connected ellipses structure with a very coarse initial guess. Under the proposed framework, we first improve the initial guess by modeling the silhouette region as a set of disconnected ellipses using mixture of Gaussian densities or the heuristic approaches. Then, an iterative method is applied in a similar fashion to the Iterative Closest Point (ICP) (Alshawa, 2007; Li and Griffiths, 2000; Besl and Mckay, 1992) algorithm. Each iteration contains two parts: first part is to assign all the contour points to the individual unconnected ellipses, which we refer to as the segmentation step and the second part is the non-linear least square approach that minimizes both the sum of square distances between the contour points and ellipse's edge as well as minimizing the ellipse's vertex pair (s) distances, which we refer to as the minimization step. We illustrate the effectiveness of our methods through experimental results on several images as well as applying the algorithm to a mini database of human upper-body images.
机译:在许多图像处理应用中,通常可以通过一组连接的椭圆形来描述在图像轮廓中传达的结构。通常,使连接的椭圆结构与轮廓对齐的以前的拟合方法通常缺少连续的求解空间。另外,所获得的解决方案通常仅满足部分椭圆,而另一些则拟合不良。在本文中,我们通过提出一个迭代框架来解决这两个问题,该框架将2D轮廓轮廓拟合到具有非常粗略的初始猜测的预先指定的连接椭圆结构。在提出的框架下,我们首先通过使用高斯密度混合或启发式方法将轮廓区域建模为一组不连续的椭圆,从而改善了初始猜测。然后,以与迭代最近点(ICP)(Alshawa,2007; Li and Griffiths,2000; Besl and Mckay,1992)算法类似的方式应用迭代方法。每次迭代包含两个部分:第一部分是将所有轮廓点分配给各个未连接的椭圆,我们将其称为分割步骤;第二部分是非线性最小二乘法,该方法最小化了两个轮廓之间的平方距离之和。轮廓点和椭圆的边缘,以及最小化椭圆的顶点对距离,我们将其称为最小化步骤。我们通过在几张图像上的实验结果以及将该算法应用到人类上身图像的微型数据库中,说明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号