首页> 外文期刊>Pattern recognition letters >Dynamic hierarchical algorithms for document clustering
【24h】

Dynamic hierarchical algorithms for document clustering

机译:用于文档聚类的动态分层算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, two clustering algorithms called dynamic hierarchical compact and dynamic hierarchical star are presented. Both methods aim to construct a cluster hierarchy, dealing with dynamic data sets. The first creates disjoint hierarchies of clusters, while the second obtains overlapped hierarchies. The experimental results on several benchmark text collections show that these methods not only are suitable for producing hierarchical clustering solutions in dynamic environments effectively and efficiently, but also offer hierarchies easier to browse than traditional algorithms. Therefore, we advocate its use for tasks that require dynamic clustering, such as information organization, creation of document taxonomies and hierarchical topic detection.
机译:本文提出了两种聚类算法:动态层次紧凑和动态层次星。两种方法都旨在构造一个集群层次结构,处理动态数据集。第一个创建集群的不相交的层次结构,而第二个创建重叠的层次结构。在几个基准文本集合上的实验结果表明,这些方法不仅适合于在动态环境中有效高效地生成层次化聚类解决方案,而且还提供了比传统算法更易于浏览的层次结构。因此,我们提倡将其用于需要动态聚类的任务,例如信息组织,文档分类法的创建和分层主题检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号