首页> 外文期刊>Pattern recognition letters >Class-dependent projection based method for text categorization
【24h】

Class-dependent projection based method for text categorization

机译:基于类的基于投影的文本分类方法

获取原文
获取原文并翻译 | 示例

摘要

Text categorization presents unique challenges to traditional classification methods due to the large number of features inherent in the datasets from real-world applications of text categorization, and a great deal of training samples. In high-dimensional document data, the classes are typically categorized only by subsets of features, which are typically different for the classes of different topics. This paper presents a simple but effective classifier for text categorization using class-dependent projection based method. By projecting onto a set of individual subspaces, the samples belonging to different document classes are separated such that they are easily to be classified. This is achieved by developing a new supervised feature weighting algorithm to learn the optimized subspaces for all the document classes. The experiments carried out on common benchmarking corpuses showed that the proposed method achieved both higher classification accuracy and lower computational costs than some distinguishing classifiers in text categorization, especially for datasets including document categories with overlapping topics.
机译:文本分类对传统分类方法提出了独特的挑战,因为文本分类在现实世界中的应用中数据集固有的大量功能以及大量的训练样本。在高维文档数据中,类别通常仅按要素子集进行分类,要素子集通常对不同主题的类别有所不同。本文提出了一种简单但有效的分类器,该方法使用基于类的基于投影的方法对文本进行分类。通过投影到一组单独的子空间上,可以将属于不同文档类别的样本进行分离,以便轻松对其进行分类。这是通过开发新的监督特征加权算法来学习所有文档类的优化子空间来实现的。在常见的基准语料库上进行的实验表明,与文本分类中的一些区别分类器相比,所提出的方法在分类准确度和计算成本上均达到了更高的水平,特别是对于包含主题重叠的文档类别的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号