首页> 外文期刊>Pattern recognition letters >Discriminative feature extraction for speech recognition using continuous output codes
【24h】

Discriminative feature extraction for speech recognition using continuous output codes

机译:使用连续输出码进行语音识别的鉴别特征提取

获取原文
获取原文并翻译 | 示例

摘要

Feature transformation techniques have been widely investigated to reduce feature redundancy and to introduce additional discriminative information with the aim to improve the performance of automatic speech recognition (ASR). In this paper, we propose a novel method to obtain discriminative feature transformation based on output coding technique for speech recognition. The output coding transformation projects the speech features from their original space to a new one where each dimension of the features captures information to distinguish different phones. Using polynomial expansion, the short-time spectral features are first expanded to a high-dimensional space where the generalized linear discriminant sequence kernel is applied on the sequences of input feature vectors. Then, the output coding transformation formulated via a set of linear SVMs projects the sequences of high dimensional vectors into a tractable low-dimensional feature space where the resultant features are well-separated continuous output codes for the subsequent multi-class classification problem. Our experimental results on the TIMIT corpus show that the proposed features achieve 10.5% ASR error rate reduction over the conventional spectral features.
机译:特征转换技术已得到广泛研究,以减少特征冗余并引入其他区分性信息,以提高自动语音识别(ASR)的性能。在本文中,我们提出了一种基于输出编码技术进行语音识别的判别特征变换的新方法。输出编码转换将语音功能从其原始空间投影到一个新的空间,其中该功能的每个维度捕获信息以区分不同的电话。使用多项式展开,将短时频谱特征首先扩展到高维空间,在该空间中将广义线性判别序列核应用于输入特征向量的序列。然后,通过一组线性SVM制定的输出编码转换将高维向量的序列投影到可处理的低维特征空间中,在该空间中,所得特征是用于后续多类分类问题的良好分隔的连续输出代码。我们在TIMIT语料库上的实验结果表明,与传统频谱特征相比,所提出的特征实现了10.5%的ASR错误率降低。

著录项

  • 来源
    《Pattern recognition letters》 |2012年第13期|p.1703-1709|共7页
  • 作者单位

    School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore;

    Institute for Infocomm Research, Singapore 138632, Singapore;

    School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore;

    School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore,Institute for Infocomm Research, Singapore 138632, Singapore,University of Eastern Finland, F1-80101 Joensuu, Finland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    speech recognition; feature transformation; generalized discriminant analysis; output coding;

    机译:语音识别;特征转换;广义判别分析输出编码;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号