首页> 外文期刊>Pattern recognition letters >Hyperspectral image segmentation through evolved cellular automata
【24h】

Hyperspectral image segmentation through evolved cellular automata

机译:通过进化的细胞自动机进行高光谱图像分割

获取原文
获取原文并翻译 | 示例

摘要

Segmenting multidimensional images, in particular hyperspectral images, is still an open subject. Two are the most important issues in this field. On one hand, most methods do not preserve the multidimensional character of the signals throughout the segmentation process. They usually perform an early projection of the hyperspectral information to a two dimensional representation with the consequent loss of the large amount of spectral information these images provide. On the other hand, there is usually very little and dubious ground truth available, making it very hard to train and tune appropriate segmentation and classification strategies. This paper describes an approach to the problem of segmenting and classifying regions in multidimensional images that performs a joint two-step process. The first step is based on the application of cellular automata (CA) and their emergent behavior over the hyperspectral cube in order to produce homogeneous regions. The second step employs a more traditional SVM in order to provide labels for these regions to classify them. The use of cellular automata for segmentation in hyperspectral images is not new, but most approaches to this problem involve hand designing the rules for the automata and, in general, average out the spectral information present. The main contribution of this paper is the study of the application of evolutionary methods to produce the CA rule sets that result in the best possible segmentation properties under different circumstances without resorting to any form of projection until the information is presented to the user. In addition, we show that the evolution process we propose to obtain the rules can be carried out over RGB images and then the resulting automata can be used to process multidimensional hyperspectral images successfully, thus avoiding the problem of lack of appropriately labeled ground truth images. The procedure has been tested over synthetic and real hyperspectral images and the results are very competitive.
机译:分割多维图像,特别是高光谱图像,仍然是一个开放课题。两个是该领域中最重要的问题。一方面,大多数方法都不会在整个分割过程中保留信号的多维特征。他们通常将高光谱信息早期投影到二维表示中,从而损失了这些图像提供的大量光谱信息。另一方面,通常很少有可疑的地面实况,因此很难训练和调整适当的细分和分类策略。本文介绍了一种方法,该方法用于对多维图像中的区域进行分割和分类,该方法执行联合的两步过程。第一步基于细胞自动机(CA)的应用及其在高光谱立方体上的出现行为,以产生均质区域。第二步采用更传统的SVM,以便为这些区域提供标签以对其进行分类。使用细胞自动机进行高光谱图像分割并不是什么新鲜事,但是解决此问题的大多数方法都包括手工设计自动机的规则,并且通常将存在的光谱信息平均化。本文的主要贡献是研究了进化方法在生成CA规则集方面的应用,这些规则集可在不同情况下实现最佳的分割属性,而无需诉诸任何形式的投影,直到将信息呈现给用户为止。此外,我们表明,我们提出的用于获取规则的演化过程可以在RGB图像上执行,然后所得的自动机可以成功地用于处理多维高光谱图像,从而避免了缺少适当标记的地面真实图像的问题。该程序已经在合成和真实的高光谱图像上进行了测试,结果非常具有竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号